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Modeling zero-inflated count data when exposure varies: With an
application to tumor counts
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This paper is concerned with the analysis of zero-inflated count data when time of exposure varies. It
proposes a modified zero-inflated count data model where the probability of an extra zero is derived from
an underlying duration model with Weibull hazard rate. The new model is compared to the standard
Poisson model with logit zero inflation in an application to the effect of treatment with thiotepa on the
number of new bladder tumors.
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1 Introduction

Count models describe the number of events that occurred during a fixed time period T . In some
applications, this time period differs across units of observations, which raises the question how
variation in Ti should be accounted for by the model. In standard count data models with exponential
mean function, such as the Poisson and the negative binomial regression models, including log Ti
among the regressors allows to test both for proportional changes of the mean function as well as for
the absence of exposure effects.

In this paper, we consider instead varying exposure in zero-inflated count data models (e.g., Mullahy,
1986; Böhning et al., 1997). Such models are constructed from a binary mixture of an ordinary count
model and a distribution with probability mass of one at zero. They account for zero inflation, a
situation where the proportion of zeros, conditional on a set of observed characteristics, exceeds that
predicted by standard models. The mixing generates two types of zeros, “normal” zeros and “extra”
zeros. For example, when counting the number of times a person visits a medical specialist for a
particular disease, the extra zero group is made up of people who do not suffer from that disease (when
that fact is unobserved by the analyst).

Often, the probability of an extra zero is specified as a logit function, using the same regressors as
those determining the conditional mean function of the count model. In this way, continuing the above
example, the model allows to distinguish between factors determining disease onset from those deter-
mining disease progression, for example, when counting the number of tumors (Joe and Rong, 2005;
Hsu, 2007), or the number of decayed teeth (Böhning et al., 1997). Further health-related applica-
tions of the zero-inflated Poisson and negative binomial models include Pizer and Prentice (2011), Sari
(2009), Sarma and Simpson (2006), Yen et al. (2001), Chang and Trivedi (2003), and Street et al. (1999).

Again, the question arises of how to address the effect of varying exposure time Ti in such models.
For example, counting the number of developing tumors using an inflow sample of patients can result
in varying exposure if the inflow takes place over an extended period of time whereas the observation
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window ends at a particular calendar date that is fixed and identical for everyone in the study. One
possible approach is to assume that the probability of an extra zero is time invariant, whereas exposure
enters the count part in the usual way. This assumption was made by Lee et al. (2001) in an earlier
volume of this journal, who considered exposure effects in the zero-inflated Poisson model but limited
exposure effects to a logarithmic offset in the count part of the model.

We argue that this assumption is not very plausible. In many applications, one would expect the
probability of an extra zero to decrease with increasing exposure, as does the probability of a normal
zero, albeit possibly at a different rate. A natural way of modeling time dependence of extra zeros is
in terms of an underlying stochastic process, or single spell duration model, where an extra zero arises
if the arrival time of the event (such as onset of disease in the above example) exceeds Ti. In this case,
the probability of an extra zero is equal to the survivor function at Ti.

We discuss two alternative specifications, one based on the survivor rate of the log-logistic distri-
bution and one based on the survivor rate of the Weibull distribution, respectively. While the first
approach can be implemented in standard zero-inflated count data models by including log Ti as a re-
gressor in both the logit and in the count part of the model, the second approach leads to an alternative
model for zero inflation that has to the best of our knowledge not been considered before.

An interesting aspect of this second approach is that it uses, in the case of the zero-inflated Poisson
model, the same probability model for extra zeros and normal zeros, albeit with different parameters.
Relatedly, the second approach allows to test whether the hazard rate of the underlying stochastic
process is constant, whereas the log-logistic hazard is necessarily nonconstant. We compare both
models in an application to the effect of a treatment on the recurrence rate of bladder tumors, based
on data from a randomized experiment.

2 Methods

2.1 Zero-inflated count models and exposure

The zero-inflated Poisson model with covariates but ignoring exposure can be written as (see, e.g.,
Böhning et al., 1997)

Pr(yi|xi, zi) =

⎧⎪⎨
⎪⎩

ω(zi) + (1 − ω(zi)) exp(−λ(xi)) for yi = 0

(1 − ω(zi))
exp(−λ(xi))λ(xi)

yi

yi!
for yi = 1, 2, 3, . . . ,

(1)

where yi is a count-valued random variable, 0 ≤ ωi ≤ 1 is a zero inflation parameter, and xi and
zi are covariates that can be disjunct, overlapping, or identical. The standard zero-inflated Poisson
model is obtained setting λ(xi) = exp(x′

iβ) and ω(zi) = exp(z′
iγ )/[1 + exp(z′

iγ )]. For a sample of n
independent observations, the parameters of the model can be estimated either by maximum likelihood
or by exploiting moment conditions (e.g., using nonlinear least squares or Poisson pseudomaximum
likelihood, see Staub and Winkelmann, 2013). In order to account for exposure effects in the rate of
the count process, let

λ(xi, Ti) = exp(x′
iβ + δ log Ti) , (2)

where δ is identified if there is variation in Ti across observation units. Proportionality is obtained
for δ = 1, an assumption that has been imposed a priori by Lee et al. (2001). If δ = 0, there are no
exposure effects.

2.2 Extra zeros and exposure

We approach the issue of time dependence of extra zeros from the viewpoint of an underlying stochastic
process, or single spell duration model, where an extra zero arises if the arrival time of the event exceeds
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Ti and the probability of an extra zero is equal to the survivor function at Ti. For example, adding
logarithmic exposure as a regressor to the logit part of a standard zero-inflated Poisson model amounts
to the assumption that the time to event has a log-logistic distribution. For ξ ≤ 0, the log-logistic
survivor function and thus the probability of an extra zero is given by

ω(zi, Ti) = exp(z′
iγ + ξ log Ti)/[1 + exp(z′

iγ + ξ log Ti)] = [1 + T −ξ
i exp(−z′

iγ )]−1. (3)

In this model, extra zeros decrease with increasing exposure unless ξ = 0. Numerous patterns of
duration dependence are possible, including nonmonotonic hazard rates (see Johnson et al., 1994).

However, the log-logistic distribution does not allow for a constant hazard rate and thus treats extra
zeros differently from “normal” zeros that, under the maintained assumptions, are generated from
a Poisson process. To address this discrepancy, we suggest using an alternative formulation for the
probability of an extra zero based on a complementary log–log (cloglog) model. Specifically, if events
occur randomly over time with constant hazard rate exp(z′

iγ ) and Ti is the elapsed time, then

S(Ti; z) = exp(− exp(z′
iγ )Ti) (4)

is the survivor rate at time Ti. As before, the probability of an extra zero can be modeled in terms of
the survivor rate for the single spell event. Suppose we do not want to impose the constant hazard
assumption but rather put it to test. In this case, we can use the survivor rate of the Weibull distribution,
whereby

ω(zi, Ti) = exp(− exp(z′
iγ )T ξ

i ) = exp(− exp(z′
iγ + ξ log Ti)). (5)

Therefore, the zero-inflated part effectively uses a proportional hazard model for the event “termination
of the extra-zero (or “perfect”) state by time Ti”. A positive ξ means that an increase in exposure reduces
the survivor rate and therefore the probability of an extra zero. For ξ = 1, we obtain a constant hazard
rate. For ξ > 1, duration dependence is positive. If ξ = 0, the implied hazard rate is zero and extra
zeros are time invariant and hence truly “strategic”. γ has the usual interpretation for proportional
hazard models: exp(γ ) gives the hazard ratio for a unit increase in the associated regressor.

To the best of our knowledge, such a modified zero-inflated count data model, where the binary
model for extra zeros is based on a cloglog link rather than a logit link, has not been considered in the
literature so far. Estimation of the model parameters is quite straightforward. Based on a sample of
n independent observations on (yi, xi, zi), i = 1, . . . n, with exposure T1, T2, . . . , Tn, respectively, the
log-likelihood function of the Poisson-cloglog model for zero-inflated count data can be written as

log L(β, δ, γ , ξ ) =
∑
yi=0

ln[exp(−μi) + exp(−λi) − exp(−μi − λi)]

+
∑
yi>0

ln[1 − exp(−μi)] − λi + yi ln λi, (6)

where λi = exp(x′
iβ + δ log Ti) and μi = exp(z′

iγ + ξ log Ti). The EM algorithm has been shown to
work well in this kind of problem, but straight Newton–Raphson maximization is possible as well. For
testing, it should be noted that neither do zero-inflated models nest their standard parent models, nor
do the logit and cloglog specifications for the extra zeros have a nested structure. Tests can be based
on procedures developed for non-nested models, as discussed, for example, in Vuong (1989).

2.3 Further aspects

While zero-inflated models allow for a conditional variance of the count dependent variable that
exceeds its mean, the implied degree of overdispersion might be insufficient to account for the full
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amount of variation in the data. In such a situation, one can use a mixture of a zero mass point with
a negative binomial distribution (that arises, for instance, if the Poisson rate is mixed with a gamma
distribution) and add logarithmic exposure terms as before.

Once the full model is specified and estimated, one can construct counterfactual outcome distri-
butions for alternative time periods. For example, one can predict annual rates in cases where actual
observations are for shorter periods of time. With exposure-dependent zero inflation, the mean does
not move proportionally with time. Differentiating

E(yi|xi, zi, Ti) = (1 − ω(zi, Ti))λ(xi, Ti) (7)

with respect to Ti yields

∂E(yi|xi, zi, Ti)

∂Ti
= −∂ω(zi, Ti)

∂Ti
λ(xi, Ti) + (1 − ω(zi, Ti))

∂λ(xi, Ti)

∂Ti
. (8)

The effect of exposure time is proportional only if the effect in the parent model is proportional
to exposure (∂λ(xi, Ti)/∂Ti = λ(xi)) and the probability of an extra zero is independent of time (the
zeros are purely strategic). If extra zeros decrease with increasing exposure, the first term on the
right-hand side of (8) is positive, and the expected value of such a zero-inflated count model increases
overproportionally with increasing exposure.

3 Application: The recurrence of bladder tumors

In this section, we apply the proposed methodology to a study of tumor recurrence in a sample of 85
US veterans who underwent an initial surgery to remove bladder tumors. The data were obtained from
the data repository of the Journal of the Royal Statistical Society. A detailed description of the study
can be found in Byar (1980). Earlier uses of the data, focussing on different methodological aspects,
include Sun and Wei (2000), Zhao and Sun (2011), and Wellner and Zhang (2000).

The dataset records pretreatment differences in the severity of disease progression for the 85 patients.
The number of initial tumors (INITNR) varied between 1 and 8; the tumor size (SIZE) was classified
using an integer scale between 1 and 7. Following surgery, patients were randomized to either placebo
(TREATMENT = 0, n = 47) or treatment with thiotepa (TREATMENT = 1, n = 38). Patients
were reexamined during subsequent clinic visits, and at each occasion, the number of new tumors was
recorded, and they were removed by surgical procedure. Our dependent variable COUNT is the total
number of new tumors recorded over the entire observed patient record time.

The number and timing of follow-up visits vary quite a bit among study participants. The variation
in exposure is rooted in the study design: subjects were recruited into the study over a five-year period
(between November 1971 and August 1976, see Byar, 1980), while the follow-up period was limited
by construction to the end of 1976. Thus, while some patients were observed over a period of 53
months, three participants had only one recorded follow-up visit that took place after a month. Since
the variation in exposure is mainly due to the timing of inflow into the study (rather than to treatment
status or severity of disease), one can reasonably treat it as exogenous.

The first two columns of Table 1 provide supporting evidence for exogeneity of exposure. They display
estimated parameters from log-linear Poisson regressions of exposure (in months) on TREATMENT
and on the pretreatment measures INITNR and SIZE. There is no effect of TREATMENT on overall
exposure time. Similarly, neither SIZE nor INITNR have an effect on the duration of exposure. Hence,
it is justifiable to proceed with the models developed earlier in the paper and treat the between-subject
variation in exposure as exogenous.

A second aspect of the study is that there was quite a bit of variation in the frequency of follow-up
visits, even keeping exposure constant. The overall numbers range from 1 to 38 visits. Indeed, it has
been found by earlier research that the number of visits depended on treatment (Sun and Wei, 2000).
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Table 1 Parameter estimates for exposure and number of visits (n=85) (Poisson model, robust stan-
dard errors in parentheses).

Exposure (months) Number of visits

TREATMENT −0.037 −0.032 0.444 0.454
(0.102) (0.103) (0.157) (0.159)

SIZE 0.026 0.049
(0.032) (0.055)

INITNR 0.0003 −0.003
(0.029) (0.046)

Pval (χ2 test) 0.7165 0.8380 0.0049 0.0427

Table 2 Frequency of new tumors for treatment and control group.

Frequency

0 1 2 3 5 6 8 9 10 11+ Total

Control 18 5 1 3 2 1 2 1 2 12 47
Treatment 20 3 6 1 0 2 3 0 0 3 38
Total 38 8 7 4 2 3 5 1 2 15 85

Patients in the thiotepa group tended to visit the clinic centers more often than those in the control
group, since the thiotepa treatment required such visits in order to instill the substance into the bladder.
Results in columns 3 and 4 of Table 1 confirm this relationship. For our purposes, however, this source
of endogeneity does not play any role, since we focus on the total number of newly detected tumors
rather than on their timing.

The distribution of the total number of tumors for thiotepa and placebo treatments for the 85
patients is shown in Table 2. The fraction of zeros is 53% for the treatment group, and 38% for the
control group. Overall, the thiotepa treatment appears to have a tumor reducing effect. Applications
of zero-inflated Poisson regression models allow to control for the two pretreatment variables, SIZE
and INITNR, as well as exposure, and to disentangle two channels of the treatment effect: the effect of
thiotepa on extra zeros versus the effect on the mean of the count distribution. Formally, we consider
the following model:

Extra zeros:

ωi = exp[− exp(γ0 + γ1TREATMENT + γ2SIZE + γ3INITNR + ξ log(T ime))] (9)

Count model:

λi = exp[β0 + β1TREATMENT + β2SIZE + β3INITNR + δ log(T ime)]. (10)

The estimation results for the zero-inflated Poisson model with complementary log–log link (ZIP-
cloglog) are shown in the fourth column of Table 3. We see that the treatment effect is attributed
equally to the two processes: treatment with thiotepa lowers the hazard rate of the Poisson process
by about exp(−0.53) − 1 = 41%. An almost identical estimate is obtained for the hazard of the extra
zero process, although it is not statistically significant in a t-test at conventional significance levels. A
lower hazard in the two parts of the model means that the probability of extra and normal zeros both
increase due to treatment. If a single-index Poisson model is estimated instead (column 1 of Table 3),
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Table 3 Parameter estimates for number of tumors (n = 85) (standard errors in parentheses).

Poisson Negbin ZIP-logit ZIP-cloglog ZINB-cloglog
(1) (2) (3) (4) (5)

γ1 (trt) 0.712 −0.523 −0.162
(0.508) (0.333) (0.437)

γ2 (size) −0.147 0.106 0.161
(0.160) (0.114) (0.175)

γ3 (init) −0.447 0.299 0.276
(0.152) (0.093) (0.159)

ξ (log time) −0.809 0.577 0.649
(0.310) (0.234) (0.479)

β1 (trt) −0.788 −1.216 −0.534 −0.534 −1.116
(0.318) (0.367) (0.282) (0.282) (0.436)

β2 (size) −0.026 −0.020 −0.065 −0.065 −0.119
(0.095) (0.119) (0.076) (0.076) (0.126)

β3 (init) 0.255 0.382 0.132 0.132 0.246
(0.070) (0.091) (0.060) (0.060) (0.097)

δ (log time) 0.706 0.837 0.345 0.346 0.256
(0.270) (0.237) (0.267) (0.268) (0.393)

σ 2 2.341 0.942
(0.485) (0.378)

Log-likelihood −380.4 −193.8 −261.9 −261.7 −189.5

Note: The probability of an extra zero is modeled as ω(zi, Ti ) = [1 + exp(−z′
iγ − ξ log Ti )]

−1 in (3), and as ω(zi, Ti ) =
exp(− exp(z′

iγ + ξ log Ti )) in (4) and (5).

then the overall, combined treatment effect is correspondingly larger. The expected number of counts
is reduced by −55% due to treatment.

Returning to the ZIP-cloglog model, the estimated exposure effect in the cloglog part is 0.577, with
standard error 0.234. Hence, we can reject the null hypothesis of no exposure effect, that is, genuinely
strategic extra zeros, as well as the null of proportionality, the latter at the 10% level of significance. A
10% increase in exposure increases the hazard of leaving the zero state by about 6%. For example, if
the probability of an extra zero is 20%, this effect translates into a 1.8 percentage point reduction in
extra zeros.

Table 3 includes, for comparison, results for two further models, first the Poisson model with logit-
type zero inflation (ZIP-logit), and second the negative binomial model with cloglog zero inflation
(ZINB-cloglog). The ZIP-logit model gives almost identical results for the count part, whereas the
estimated zero inflation parameters differ in sign: this is a consequence of the log-logistic/logit param-
eterization defined in Eq. (3) where the survivor function increases in z′

iγ . However, effect sizes and
p-values tend to be similar to that of the cloglog specification. The logit estimate of the exposure effect
is −0.081; for example, increasing exposure by 10% when the baseline probability of an extra zero
is 20% reduces the probability of an extra zero by 0.2 × (1 − 0.2) × −0.081 × 0.1 = −1.3 percentage
points.

The final column 5 of Table 3 shows the ZINB-cloglog results. While the log-likelihood improves
substantially relative to the ZIP-cloglog, it is interesting to note that much of the improvement is
already achieved by a standard negative binomial model (see column 2 of Table 3, log L = −193.8),
while allowing for additional zero inflation only leads to a relatively small further improvement that is
statistically insignificant if judged by a Vuong test. However, the predicted probability of extra zeros
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is 34.5% and thus substantial even in the ZINB-cloglog model. By contrast, the predicted probability
of a normal zero is only 11.3% . In the ZIP-cloglog, almost all zeros are predicted to be extra zeros,
44.5% versus 0.2% .

In zero-inflated models, the overall treatment effect is the combination of two effects, the effect on
the mean of the count distribution and the effect on the extra zeros (see Eq. (8)). One should not
interpret these in isolation. In the present case, the extra zeros treatment effect is smaller in the ZINB
than in the ZIP model, thereby offsetting the larger estimated treatment effect on the mean of the count
distribution in the ZINB (−1.116 vs. −0.534 in the ZIP). The attribution of the treatment effect to the
two parts of the model differs between the ZIP and the ZINB, likely because the ZINB introduces two
sources of heterogeneity, one related to strategic zeros and one related to the intensity of the process,
whereas the ZIP only allows for the former. As mentioned before, a formal test rejects the ZIP against
the ZINB and thus underlines the relevance of accounting for such additional heterogeneity in this
particular application.

4 Concluding remarks

This paper discussed the problem of modeling count data with extra zeros when time of exposure
varies. Our approach builds on the class of so-called zero-inflated count data models, a mixture of an
ordinary count model and a distribution that is degenerate at zero. We generalize earlier research by
Lee et al. (2001) where exposure effects were excluded from the zero-inflated part of the model. This
exclusion makes a very strong assumption on the nature of the extra zeros, and we argue that, in many
situations, it is more reasonable to allow for exposure effects among extra zeros as well. Under the
assumption that extra zeros are generated by a separate Poisson-like process, one should use a cloglog
link to parameterize the probability of an extra zero. As in the Poisson process, this allows to adjust
for varying period at risk in a theory consistent way, by including the logarithm of exposure time as an
offset or as an additional control variable in the inflated part of the model. The extension to a negative
binomial model with complementary log–log zero inflation is straightforward.
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