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Categorical Dependent Variables: Examples

Participation in elections (no = 0, yes = 1)

Voting in a multi-party system (polytomous variable)

Labor force participation (no = 0, yes = 1; or: no = 0, part-time = 1,
full-time = 2)

Union membership

Purchase of a durable consumer good in a certain time span

Successfully selling a good on eBay

Victim of a crime in last 12 month

Divorce within five years after marriage

Number of children

Choice of traffic mode (by car = 0, public transportation = 1; or: by
foot = 0, by bike = 1, public transportation = 2, by car = 3)

Life satisfaction on a scale from 1 to 5
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Categorical Dependent Variables: Models

Dependent Variable Method

continuous, unbounded linear regression (OLS)

binary (dichotomous) logistic regression, probit, and related mod-
els

nominal (polytomous) multinomial logit, conditional logit

ordered outcomes ordered logit/probit, and related models

count data poisson regression, negative binomial re-
gression, and related models

limited/bounded censored regression (e.g. Tobit)

(censored) duration data survival models, event history analysis (e.g.
Cox regression)

Independent Variables: metric and/or dichotomous
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Multivariate Methods 1.pdf

Why multivariate methods
with categorical or other types

of variables?

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 4 / 188



Multivariate Methods 2.pdf

Three Examples:

1. The smaller the proportion of calcium in 
the bones of an individual (X), the higher
the number of unmarried aunts (Y). 
(Krämer 1991: 127)

rxy < 0
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Multivariate Methods 3.pdf

2. The larger the size of shoes (X), the
higher the income (Y).

rxy > 0
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Multivariate Methods 4.pdf

3. The larger a fire brigade, i. e. the more
firefighters (X), the higher the damage by
the fire (Y).
(Paul Lazarsfeld)

rxy > 0
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Multivariate Methods 5.pdf

X (calcium)
+

Z (AGE)                        rxy < 0
-

Y (unmarried aunts)
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Multivariate Methods 6.pdf

X (size of shoes)
+

Z (Gender)                     rxy > 0
+ 

Y (income)
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Multivariate Methods 7.pdf

X (firefighters)
+

Z (fire)             - rxy > 0
+

Y (damage)

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 10 / 188



Multivariate Methods 8.pdf

Experimental approach:

Control (small number of firefighters)
Experimental factor (large number of firefighters)

Essential: Randomization

x1 o1 R
x2 o2 R

Neutralization of other factors z1, z2, z3, …by
randomization!
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Multivariate Methods 9.pdf

Serious problem in evaluation research
For example:

1. Labour Market: Occupational training and career success

2. Educational policies: Comparing state and private schools

3. Health policy: SWICA study: Fitness training and health
conditions

4. Criminology: Imprisonment versus community work and 
recidivism rates

Causal effect or selection effect?
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Multivariate Methods 10.pdf

If experimental designs are not applicable:
Multivariate statistics

1. Which other factors besides X and Y may be
relevant? (Theory)

2. Other factors have to be measured.

3. Include relevant other factors („controls“) in a 
statistical model
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Multivariate Methods 11.pdf

Linear Model
y = b0 + b1x + b2z + ε
rxy > 0, b1 = 0, b2 > 0 („spurious correlation“)

byx = [sy/sx]   (rxy – rxz • ryz) / (1 – r2
xy)

rxy > 0, b1 = 0 ► rxy = rxz • ryz

More general case:

y = b0 + b1x1 + b2x2 + …+ bmxm + ε
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Multivariate Methods 12.pdf

Simple method: Split of bivariate tables by
control variables (multivariate table
analysis)

Problem: Easy, if one dichotomous control
variable. Otherwise, a large data set is
necessary. 
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Multivariate Methods 13.pdf

Multivariate analysis: 
Example with three categorical 

variables 
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Multivariate Methods 14.pdf
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Multivariate Methods 15.pdf
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Multivariate Methods 16.pdf

By Sex

Men Women

Mortality
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Multivariate Methods 17.pdf

Social class

Men
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Multivariate Methods 18.pdf

Sex                    

Mortality     

Social 
Class

Interaction of
Sex and class

Multicausality and
interaction

Women
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Multivariate Methods 19.pdf

Male, III. Class
died

Female, I. Class
survived
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Course overview

Monday
Morning: Lecture (Diekmann)

I Introduction and overview
I Linear regression (OLS)
I Linear probability model (LPM)
I Logistic regression model

Afternoon: Lecture (Diekmann)
I Logistic regression: Interpretation of coefficients
I Maximum-likelihood estimation (MLE) of parameters

Tuesday
Morning and afternoon: PC Pool (Jann)

I Introduction to software (SPSS and Stata) and data files
I Exercises for LPM and logistic regression
I Post processing of results: Interpretation of coefficients
I Post processing of results: Tabulation

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 23 / 188



Course overview (continued)

Wednesday
Morning: Lecture (Jann)

I Statistical inference: Wald-test and likelihood-ratio test (LR)
I Evaluation of models: Goodness-of-fit measures (GOF)
I Model specification
I Model diagnostics

Afternoon: PC Pool (Jann)
I Exercises: Statistical inference, goodness-of-fit, specification,

diagnostics
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Course overview (continued)

Thursday

Morning: Lecture (Jann)
I Probit model
I Logit/Probit as latent variable models and derivation from utility

assumptions
I Ordered Logit and Probit, multinomial and conditional Logit

Afternoon: PC Pool (Jann)
I Exercises for Probit, ordered Logit/Probit, multinomial and conditional

Logit

Friday

Morning: Lecture (Jann)
I Outlook: Models for count data, panel data models, other topics
I Final discussion
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Textbooks and Overview Articles: German
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General Statistics Textbooks
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Part I

General Statistical Concepts

Probability and Random Variables

Probability Distributions

Parameter Estimation

Expected Value and Variance
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Probability and Random Variables
Given is a random process with possible outcomes A , B, etc. The
probability Pr(A) is the relative expected frequency of event A .

Probability axioms:

Pr(A) ≥ 0

Pr(Ω) = 1

Pr(A ∪ B) = Pr(A) + Pr(B) if A ∩ B = ∅

where Ω is the set of (disjunctive) elementary outcomes.

Conditional probability Pr(A |B): Probability of A given the occurrence
of B

A random variable is a variable that takes on different values with
certain probabilities.
Imagine tossing a coin. The outcome of the toss is a random variable.
There are two possible outcomes, heads and tails, and each outcome
has probability 0.5.
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Probability Distribution

A random variable can be discrete (only selected values are
possible) or continuous (any value in an interval is possible).

The probability distribution of a random variable X can be expressed
as probability mass or density function (PDF) or as cumulative
probability function (CDF).

PDF
discrete: f(x) = p(x) = Pr(X = x)

continuous: Pr(a ≤ X ≤ b) =
∫ b

a f(x) dx

CDF
discrete: F(x) = Pr(X ≤ x) =

∑
xi≤x p(xi)

continuous: F(x) = Pr(X ≤ x) =
∫ x
−∞

f(t) dt
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Probability Distribution: Example

Normal distribution and density (continuous)

0
.2

.4
.6

.8
1

−4 −2 0 2 4
x

F(x)
f(x)

f(x) = φ(x |µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2
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Parameter Estimation

Distributions can be described by parameters such as the expected
value (the mean) or the variance. The goal in statistics is to estimate
these parameters based on sample data.

Desirable properties of an estimator θ̂ for parameter vector θ:
1 Unbiasedness: E(θ̂) = θ – on average (over many samples) the

estimator is equal to the true θ.

2 Efficiency: The variance of the estimator (i.e. the variability of the
estimates from sample to sample) should be as small as possible.

3 Consistency: Unbiasedness is not always possible, but an estimator
should at least be asymptotically unbiased (i.e. E(θ̂) should approach θ
as n → ∞).

The sampling variance of an estimator determines the precision of
the estimator and can be used to construct confidence intervals and
significance tests. (The sampling variance itself is also unknown and
has to be estimated.)
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Expected Value and Variance

Expected Value E(X) = µ

discrete: E(X) =
∑

i

xip(xi) continuous: E(X) =

∫ +∞

−∞

xf(x) dx

Variance V(X) = σ2

general: V(X) = E[(X − µ)2] = E(X2) − µ2

discrete: V(X) =
∑

i

(xi − µ)
2p(xi) cont.: V(X) =

∫ +∞

−∞

(x − µ)2f(x) dx

Sample estimators X̄ and SX

Ê(X) = X̄ =
1
N

N∑
i=1

Xi V̂(X) = SX =
1

N − 1

N∑
i=1

(Xi − X̄)2
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Part II

Multiple Linear Regression

Model

Assumptions

Interpretation

Estimation

Goodness-of-Fit
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Linear Regression Model

The conditional expectation of a continuous random variable Y is
expressed as a linear function of the predictors X1, X2, . . . , Xm.

E(Yi |Xi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βmXim

where Xi stands for (Xi1, . . . ,Xim).

Specific observations randomly deviate from the expected value so
we add a random error term to the model:

Linear Regression Model (LRM)

Yi = E(Yi |Xi) + εi = β0 + β1Xi1 + β2Xi2 + · · ·+ βmXim + εi

E(εi) = 0
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Linear Regression Model

LRM in Matrix Notation

Y = Xβ+ ε
Y1

Y2
...

Yn

 =


1 X11 X12 · · · X1m

1 X21 X22 · · · X2m
...
...

...
. . .

...

1 Xn1 Xn2 · · · Xnm





β0

β1

β2
...

βm


+


ε1
ε2
...

εn


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Graphical Representation
Simple LRM

X

Y

E(Yi)

E(Yi) = α + βxiεi

α

β

yi

xi1 2
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Assumptions
1 Conditional expectation of error term is zero

E(εi) = 0

This implies
E(Yi |Xi) = X ′i β

and also that the errors and predictors are uncorrelated:

E(εiXik ) = 0

(correct functional form, no relevant omitted variables, no reverse
causality/endogeneity)

2 The errors have constant variance and are uncorrelated

E(εε′) = σ2I

3 Errors are normally distributed:

εi ∼ N(0, σ)
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Assumptions

X

X1

X2

X3

X4

Y

f (ε)

Y = β0 + β1X
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Heteroscedasticity
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Interpretation

Model:
E(Y |X) = β0 + β1X1 + β2X2 + · · ·+ βmXm

Marginal Effect / Partial Effect

∂E(Y |X)

∂Xk
= βk

Discrete Change / Unit Effect (effect of ∆Xk = 1)

∆E(Y |X)

∆Xk
= E(Y |X ,Xk + 1) − E(Y |X ,Xk ) = βk

In linear regression: marginal effect = unit effect

⇒ effects are independent of value of Xk and Y (constant effects)
⇒ very convenient for interpretation
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OLS Estimation
The parameters of the linear regression model are usually estimated
by the method of ordinary least squares (OLS).
The objective of the method is to minimize the squared differences
between the model predictions given the estimate and the observed
data, i.e. to choose the β̂ that minimizes

N∑
i=1

(Yi − X ′i β̂)
2

In matrix notation, the OLS solution is as follows:

OLS Estimator

β̂ = (X ′X)−1X ′Y

The OLS estimator is unbiased and efficient (best linear unbiased
estimator, BLUE), if assumptions (1) and (2) hold.
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Residuals and R-Squared
Predictions based on estimated parameters:

Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂mXim

Residuals: Deviation between predictions and observed data

ri = Yi − Ŷi = Yi − β̂0 − β̂1Xi1 − · · · − β̂mXim

The mechanics of OLS are such that the sum of residuals is zero and
the sum of squared residuals is minimized.
As a measure of goodness-of-fit between the data and the model,
the R-squared is used: Proportion of variance of Y which is
“explained” by the model.

R-squared

R2 =

∑N
i=1(Ŷi − Ȳ)2∑N
i=1(Yi − Ȳ)2

= 1 −

∑N
i=1 r2

i∑N
i=1(Yi − Ȳ)2
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Part III

Linear Probability Model (LPM)

Model

Advantages

Example

Problems

WLS estimation
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Linear Probability Model (LPM)

Given is a dichotomous (binary) dependent variable Y :

Yi =

1 Event

0 No event

Expected value: The probability distribution of Y is given as
Pr(Yi = 1) = πi for value 1 und Pr(Yi = 0) = (1 − πi) for value 0,
πi ∈ [0, 1], therefore

E(Yi) = 1 · πi + 0 · (1 − πi) = Pr(Yi = 1)

⇒ the expected value of Y is equal to the probability of Y being 1
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Linear Probability Model (LPM)

Because E(Yi) = Pr(Yi = 1) it seems reasonable to model
Pr(Yi = 1) using standard linear regression techniques:

Pr(Yi = 1|Xi) = E(Yi |Xi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βmXim

Adding the error term yields the Linear Probability Model, which
models Pr(Yi = 1) as a linear function of the independent variables:

Linear Probability Model (LPM)

Yi = Pr(Yi = 1|Xi) + εi = E(Yi |Xi) + εi

= β0 + β1Xi1 + β2Xi2 + · · ·+ βmXim + εi

where E(εi) = 0 is assumed.

The model parameters can be estimated using OLS.
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Are the OLS parameter estimates unbiased?

The model is
Yi = Pr(Yi = 1|Xi) + εi = Zi + εi

where
Zi = β0 + β1Xi1 + · · ·+ βmXim

Therefore:

εi =

−Zi if Yi = 0

1 − Zi if Yi = 1

It follows:

E(εi) = Pr(Yi = 0|Xi)(−Zi) + Pr(Yi = 1|Xi)(1 − Zi) = 0

because Pr(Yi = 1|Xi) = Zi by definition. Since E(εi) = 0, the OLS
estimates are unbiased. (Depending on the model being correct!)
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Advantages of the LPM

Easy to interpret:
I βk is the expected change in Pr(Y = 1) for a unit increase in Xk

Pr(Y = 1|Xk + 1)) − Pr(Y = 1|Xk ) = βk

I βk is the partial (marginal) effect of Xk on Pr(Y = 1)

∂Pr(Y = 1|X)

∂Xk
= βk

Simple to estimate via OLS.

Good small sample behavior.

Often good as a first approximation, especially if the mean of
Pr(Y = 1) is not close to 0 or 1 and effects are not too strong.

Applicable in cases where the Logit (or similar) fails (e.g. if Y constant
for one value of a categorical predictor, see Caudill 1988; in badly
behaved Randomized Response data)

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 50 / 188



Polytomous dependent variable

LPM can also be used to model a polytomous variable that has J > 2
categories (e.g. religious denomination).

One equation is estimated for each category, i.e.

Yi1 = β01 + β11 + Xi + · · ·+ εi1

Yi2 = β02 + β12 + Xi + · · ·+ εi2
...

YiJ = β0J + β1J + Xi + · · ·+ εiJ

where YiJ =

1 if Yi = j

0 else

As long as constants are included in the separate models, OLS ensures
that

J∑
j=1

Ŷij =
J∑

j=1

(β̂0j + β̂1j + Xi + · · ·+) = 1
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Example of the LPM: Labor Force Participation (Long
1997:36-38)
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Example of the LPM: Labor Force Participation (Long
1997:36-38)
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Problems of LPM

Nonsensical predictions. Predictions from the LPM can be below 0
or above 1, which contradicts Kolmogorov’s probability axioms.

1

0

Y

X

LPM

B

A

1

0

Y

X

 

Truncated LPM

B

A

Unreasonable functional form. The LPM assumes that effects are
the same over the whole probability range, but this is often not
realistic.

Usefulness of R2 is questionable. Even a very clear relationships do
not result in a high R2-values.
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Problems of LPM

Nonnormality. The errors are not normally distributed in the LPM,
since εi can only have two values: −Zi or 1 − Zi .
Consequences:

I normal-approximation inference is invalid in small samples
I more efficient non-linear estimators exist (LPM is not BUE)

Heteroskedasticity. The errors are do not have constant variance

V(εi) = E(ε2i ) = Pr(Yi = 0)[−Zi]
2 + Pr(Yi = 1)[1 − Zi]

2

= [1 − Pr(Yi = 1)][Pr(Yi = 1)]2 + Pr(Yi = 1)[1 − Pr(Yi = 1)]2

= Pr(Yi = 1)[1 − Pr(Yi = 1)] = Zi(1 − Zi)

since E(εi) = 0 and Pr(Yi = 1) = Zi = β0 + β1Xi1 + · · ·+ βmXim.

⇒ OLS estimator is inefficient (and standard errors are biased)
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WLS estimation of LPM
Goldberger (1964) proposed to use a two-step, weighted least
squared approach (WLS) to correct for heteroskedasticity.

I Step 1: Estimate standard OLS-LPM to obtain an estimate of the error
variance

V̂(εi) = Ŷi(1 − Ŷi), Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂mXim

I Step 2: Use the estimated variance in a weighted least squares
approach to estimate the heteroskedasticity-corrected LPM
parameters. (Intuitively: smaller variance, more reliable observation.)
This is equivalent to dividing all variables (including the constant) by
the square-root of the variance and then fit an OLS model to these
modified data.

wiYi = β0wi + β1wiXi1 + · · ·+ εiwi , wi =

√
Ŷi(1 − Ŷi)−1

The procedure increases the efficiency of the LPM (but standard
errors are still somewhat biased since the true variance is unknown).
Problematic are observations for which Ŷi is outside [0, 1] (negative
variance estimate!).
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Part IV

Logistic Regression: Model

Nonlinear Relationship

The Logit Model

Log Odds Form

Simple Example
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Nonlinear Effect on P(Y = 1)

The linear effects assumed in the LPM do often not make much
sense and a more reasonable probability model should

1 ensure that Pr(Y = 1) always lies within [0, 1] and
2 use a nonlinear functional form so that effects diminish if Pr(Yi = 1)

gets close to 0 or 1

Usually it is also sensible to assume symmetry.

Example for such a nonlinear function:

1

0

P

X
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The Logit Model

A suitable function to model the relationship between Pr(Yi = 1) and the
independent variables is the logistic function.

The logistic function

Y =
eZ

1 + eZ
=

1
1 + e−Z

Parameterizing Z as a linear function of the predictors yields the Logit
model.

The Logit Model

Pr(Yi = 1|Xi) = E(Yi |Xi) =
1

1 + e−Zi
=

1
1 + e−(β0+β1Xi1+···+βmXim)
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The Logit Model

Illustration of
Pr(Yi = 1|Xi) =

1
1 + e−(β0+β1Xi)

for different choices of β0 and β1:

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0

0.5

1

X

P

(0,1)

(0,4)

(0,0.3)

(0,-1)

(4,1)
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The Logit Model
The logistic model is intrinsically linear and can be re-expressed as:

The Logit Model: Log Odds Form

ln
(

Pr(Yi = 1|Xi)

1 − Pr(Yi = 1|Xi)

)
= Zi = β0 + β1Xi1 + · · ·+ βmXim

That is, the log of the odds of Y = 1 is expressed in the Logit model as a
linear function of the predictors. (Pr(x)/[1 − Pr(x)] is called the odds of
event x.)
Derivation:

P =
eZ

1 + eZ
= 1 +

eZ

1 + eZ
−

1 + eZ

1 + eZ
= 1 −

1
1 + eZ

⇒ 1 − P =
1

1 + eZ

⇒ eZ =
1

1 − P
− 1 =

P
1 − P

⇒ Z = ln
(

P
1 − P

)
The function f(x) = ln(x/(1 − x)) is sometimes called the logit function;
L = ln(x/(1 − x)) is called the logit of x (Berkson 1944, 1951).
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A Simple Example

Data:

id educ income sex car rural

1 9 3500 0 1 1

2 8 2400 0 0 1

3 18 5200 1 1 1

4 9 3200 0 0 0

5 9 2300 0 0 0

6 10 4500 1 1 1

7 18 12000 0 1 0

8 10 6500 1 1 1

9 9 99999 0 1 1

10 9 99999 0 0 0

11 9 2300 0 0 1

12 10 99999 1 0 0

13 13 4600 0 1 1

14 10 1600 1 1 0

15 9 2900 1 0 0

Income = 99999 is missing value

car by sex (income , 99999, n = 12):
sex

0 1
0 4 1

car 4/7 = 0.5714 1/5 = 0.20
1 3 4

3/7 = 0.4286 4/5 = 0.80

Logit: Pr(car = 1) = 1
1+e−[β0+β1sex]

LPM: E(car) = β0 + β1sex

⇒ β̂0, β̂1?
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A Simple Example - Estimation
LPM

I sex = 0:
E(car) = β0 ⇒ β̂0 = 0.4286

I sex = 1:

E(car) = β0 + β1 ⇒ β̂1 = 0.80 − 0.4286 = 0.3714

⇒ Ê(car) = 0.4286 + 0.3714 · sex
Logit

I sex = 0:

0.4286 =
1

1 + e−β̂0
⇒ β̂0 = ln

(
0.4286

1 − 0.4286

)
= −0.2876

I sex = 1:

β̂0 + β̂1 = ln
(

0.80
1 − 0.80

)
⇒ β̂1 = ln 4 − (−0.2876) = 1.6739

⇒ P̂r(car = 1) = 1
1+e−[−0.2876+1.6739·sex]
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A Simple Example - Interpretation
LPM

I Effect of shift from sex = 0 to sex = 1 (∆X = 1):

∆Ê(car) = +0.3714

I Partial effect:
∂Ê(car)

∂sex
= 0.3714

Logit
I Effect of shift from sex = 0 to sex = 1 (∆sex = 1):

∆P̂r(car) = 0.80 − 0.4286 = 0.3714

I Partial effect (let P = P̂r(car = 1)):

∂P
∂sex

= β1 ·P(1−P), for P = .5:
∂P
∂sex

= 1.6739 · .5(1− .5) = 0.42

Effect of sex: Probability of driving a car increases by 0.37
(= percentage difference d%).
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Part V

Logistic Regression: Interpretation of Parameters

Qualitative Interpretation

Effect on the Log of the Odds

Odds Ratio

Marginal Effects and Elasticities

Predictions and Discrete Change Effect

Relative Risks
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Non-Linearity

The relationship between Pr(Y = 1) and the predictors in a Logit
model is non-linear (S-shaped).

Therefore: The effect of a predictor on Pr(Y = 1) depends on the
level Pr(Y = 1) of, i.e. the effect is not constant.

This makes interpretation more difficult than for linear regression.
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The Constant
Consider the following simple Logit model:

logit(Pr[Y = 1|X ]) = β0 + β1X

A change in β0 simply sifts the entire probability curve (an increase in
β0 shifts the curve left(!), and vice versa):

0
.2

5
.5

.7
5

1
P

−5 0 5
x

b0 = 2
b0 = 0
b0 = −2

When β0 = 0, the curve
passes through point
(0, .5).

(−β0/β1 is equal to the
value of X for which
P = 0.5)

All else equal, a higher β0 means that the general level of Pr(Y = 1)
is higher.
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Slope Parameters: Sign and Size
The sign of β1 determines the direction of the probability curve. If β1

is positive, Pr(Y = 1|X) increases as a function of X (and vice versa).
The size of β1 determines the steepness of the curve, i.e. how quickly
Pr(Y = 1|X) changes as a function of X .
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5

1
P

−5 0 5
x

b1 = −1
b1 = 1 0

.2
5

.5
.7

5
1

P

−5 0 5
x

b1 = .5
b1 = 1
b1 = 2
b1 = 4

Sizes of effects can be compared for variables that are on the same
scale (e.g. compare the effect of the same variable in two samples).
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Effect on Log of the Odds

The Logit model is

ln
(

P
1 − P

)
= β0 + β1X1 + β2X2 + · · ·

where P stands for Pr(Y = 1|X). Therefore,

∂ ln
(

P
1 − P

)
/∂Xk = βk

⇒ βk is the marginal effect of Xk on the log of the odds (the logit).

Increase in Xk by t units changes the log of the odds by t · βk

But what does this mean? Log-odds are not very illustrative
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Example

Travel to work:

Y =

1 public transportation

0 by car

Pr(Y = 1) =
1

1 + e−Z
, Z = β0 + β1X1 + β2X2 + · · ·

Z = 0.01 + 0.079 · educ+ 0.02 · age

Increase in educ by one unit (one year) increases the logit by 0.079.
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Odds Ratio (Effect Coefficient, Factor Change)
The Logit model can be rewritten in terms of the odds:

P
1 − P

= e(β0+β1X1+β2X2+··· ) = eβ0 · eβ1X1 · eβ2X2 · · · ·

Effect of increase in X1 by one unit:

P(X1 + 1)

1 − P(X1 + 1)
= eβ0 · eβ1(X1+1) · eβ2X2 · · · · =

P
1 − P

· eβ1

⇒ change in X1 has a multiplier effect on the odds: The odds are
multiplied by factor eβ1

Odds Ratio / Effect Coefficient / Factor Change Coefficient

αk =

P(Xk +1)
1−P(Xk +1)

P
1−P

= eβk

Example: e0.079 = 1.08
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Odds Ratio (Effect Coefficient, Factor Change)

Percent change coefficient (eβk − 1) · 100

Example: (e0.079 − 1) · 100 = 8
⇒ increase of education by one year increases odds by 8%

Assume the proportion of public transportation is 25% (odds = 1 : 3)

P
1 − P

=
0.25

1 − 0.25
=

1
3

= 0.333

1
3
· 1.08 = 0.36

⇒ ∆educ = 1: Odds increase from 0.33 to 0.36 in favor of public
transportation

Approximation

(eβk − 1) ≈ βk if |βk | < 0.1
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Standardized Factor Change

To make effects comparable, it is sometimes sensible to weight them
by the standard deviations of the X .

Standardized Factor Change

αsk
k = eβk ·sk

where

sk =

√√√
1
N

N∑
i=1

(Xi − X̄)2

is the standard deviation of Xk

Interpretation: Effect of a standard deviation increase in X on the
odds P/(1 − P)

The procedure makes not much sense for binary predictors, since in
this case the standard deviation has not much meaning.
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Marginal/Partial Effect
Odds may be more intuitive then Log-Odds, but what we really are
interested in are the effects on the probability P(Y = 1).
Unfortunately P(Y = 1) is a non-linear function of X so that the effect
on P(Y = 1) not only depends on the amount of change in X , but
also on the level of X at which the change occurs.

0

.25

.5

.75

1
P

0 1 2 3 4 5
x

A first step in the direction of interpreting effects on the probability
scale is to compute the first derivative of the function at different
positions.
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Marginal/Partial Effect

In linear regression: ∂Y
∂Xk

= βk

In logistic regression:

P =
1

1 + e−[β0+β1X1+···+βmXm]
=

1
1 + e−Z

=
(
1 + e−Z

)−1

∂P
∂Xk

= −
1

(1 + e−Z)2
· (−βk )e−Z

= βk ·
1

1 + e−Z︸    ︷︷    ︸
P

·
e−Z

1 + e−Z︸    ︷︷    ︸
1−P

= βk · P(1 − P).

Marginal Effect in Logistic Regression
∂P
∂Xk

= βk · P(1 − P)
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Marginal/Partial Effect
Maximum marginal effect at P = 0.5 (the inflection point of the
probability curve)

βk ·
1
2

(
1 −

1
2

)
= βk ·

1
4

Divide-by-four rule
The maximum marginal effect of Xk is equal to βk/4.
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Marginal/Partial Effect

Relative magnitudes of marginal effect for two variables

∂P/∂Xk

∂P/∂Xj
=
βk · P(1 − P)

βj · P(1 − P)
=
βk

βj

The ratio of coefficients reflects the relative magnitudes of the
marginal effect on Pr(Y = 1).
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Marginal/Partial Effect
Average marginal effect: The value of the marginal effect differs
depending on the values of the predictors. There are two main
methods to compute the “average” marginal effect based on the
observed sample.

1 Marginal effect at the mean of the predictors (marginal effect for the
“average” individual)

Pr(Y = 1|X̄) =
1

1 + e−[β0+β1X̄1+·+βmX̄m]

∂Pr(Y = 1|X̄)

∂Xk
= βk · Pr(Y = 1|X̄)(1 − Pr(Y = 1|X̄))

2 Average of the marginal effect over all observations (sample average of
individual marginal effects).

1
N

N∑
i=1

∂Pr(Y = 1|Xi)

∂Xk
=

1
N

N∑
i=1

βk · Pr(Y = 1|Xi)(1 − Pr(Y = 1|Xi))
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Marginal/Partial Effect

Marginal effect at the mean: Example

sex

0 1
car 0 4 1

1 3 4

sex = 5/12 = 0.416

Pr(car = 1|sex) =
1

1 + e−[−0.2876+1.6739·0.416]
= 0.601

∂Pr(car = 1|sex)
∂sex

= 1.6739 · 0.601(1 − 0.601) = 0.40
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Marginal/Partial Effect: Problems
Marginal effects at the mean of the predictors often do not make
much sense. For binary variables, as in the example above, the mean
does not correspond to an observable value. In general, X̄ may not
be a good description of the “typical” or “average” observation.
Marginal effects are often only crude approximations of the “real”
effects on the probability (especially for binary predictors).
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Elasticity

The elasticity, which is closely related to the marginal effect, can be
computed if the predictor has ratio scale level (metric variable with a
natural zero-point).

Elasticity in logistic regression
∂P/P
∂Xk/Xk

=
∂P
∂Xk

Xk

P
= βk Xk (1 − P)

Example: In traffic mode choice, let Xk be the price or travel duration.
The elasticity can then (approximately) be interpreted as the
percent-percent effect⇒ percent change of P if Xk is increased by
one percent.
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Semi-Elasticity

Since P is on an absolute scale in the [0, 1] interval, the
semi-elasticity is usually better interpretable.

Semi-elasticity in logistic regression
∂P
∂Xk/Xk

=
∂P
∂Xk

Xk = βk Xk P(1 − P)

Interpretation: How much does P change (approximately) if Xk is
increased by one percent.

Example: If Xk is the price of a bus ticket and the semi-elasticity is
−0.02, then the probability to use the bus decreases by two
percentage points if the price is increased by one percent.

Note: Similar to marginal effects, elasticities and semi-elasticities
depend on the values of the predictors in logistic regression.
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Predictions
The most direct approach to interpret the effects of the covariates on
the probability is to compute the predicted probabilities for different
sets of covariate values.

Prediction given vector Xi

P̂i = P̂r(Y = 1|Xi) =
1

1 + e−[β0+β1Xi1+·+βmXim]

The predictions can then be reported in tables or in plots.
Example: Predicted probability of driving a car depending on sex and
age.
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Discrete Change Effect

Based on predicted probabilities, the effect of a discrete change in an
independent variable, holding all other covariates constant, can be
computed.

Discrete Change Effect

∆ Pr(Y = 1|X)

∆Xk
= Pr(Y = 1|X ,Xk + δ) − Pr(Y = 1|X ,Xk )

Unit change effect: Effect of a one unit change in Xk (Petersen 1985)

Unit Change Effect

∆ Pr(Y = 1|X)

∆Xk
= Pr(Y = 1|X ,Xk + 1) − Pr(Y = 1|X ,Xk )

As outlined above, the partial change (marginal) effect does not equal
the unit change effect in the logit model.
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Discrete Change Effect

Variants of discrete change effects

0-1 change (for binary covariates)

Pr(Y = 1|X ,Xk = 1) − Pr(Y = 1|X ,Xk = 0)

centered unit change

Pr(Y = 1|X , X̄k + 0.5) − Pr(Y = 1|X , X̄k − 0.5)

standard deviation change

Pr(Y = 1|X , X̄k + 0.5sk ) − Pr(Y = 1|X , X̄k − 0.5sk )

minimum-maximum change

Pr(Y = 1|X ,Xk = Xmax
k ) − Pr(Y = 1|X ,Xk = Xmin

k )
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Discrete Change Effect

Simple example

Pr(car = 1|sex) =
1

1 + e−[−0.2876+1.6739·sex]

sex = 0 : P0 =
1

1 + e−[−0.2876]
= 0.4286

sex = 1 : P1 =
1

1 + e−[−0.2876+1.6739]
= 0.80

⇒ ∆P = 0.80 − 0.4286 = 0.37
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Discrete Change Effect

Values of the other covariates? ⇒ usually set to their mean

Pr(Y = 1|X̄ ,Xk + δ) − Pr(Y = 1|X̄ ,Xk )

In some cases, it might be more reasonable to use the median or the
mode for selected variables.

If the model contains categorical variables (e.g. sex), it can also be
illustrative to compute separate sets of discrete change effects for the
different groups.

Furthermore, it can also be sensible to compute the “average”
discrete change effect over the sample:

1
N

N∑
i=1

(Pr(Y = 1|Xi ,Xik + δ) − Pr(Y = 1|Xi ,Xik ))
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Relative Risks

In cases where Pr(Y = 1) is very low (e.g. accident statistics), it can
be reasonable to express effects in terms of relative risks.

Example: Parachute Type A versus Type B

PA = 4 · 10−6, PB = 2 · 10−6

⇒ discrete change effect: PA − PB = 0.000002

⇒ relative risks: R = PA/PB = 2

(For fun see Smith and Pell, BMJ 2003, who complain about the lack
of randomized controlled trials on parachute effectiveness.)
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Part VI

Logistic Regression: Estimation

Maximum Likelihood Estimation

MLE for Linear Regression

MLE for Logit

Large Sample Properties of MLE

Summary
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Maximum Likelihood Estimation (MLE)

Although it would be possible to use the (weighted nonlinear) least
squares method, a Logit model is typically estimated by the maximum
likelihood method.

General estimation principle:

Least Squares (LS): minimize the squared deviations between
observed data and predictions

Maximum Likelihood (ML): maximize the likelihood (i.e. the
probability) of the observed data given the estimate
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MLE – Example: Proportion of men

If π is the proportion of men in the population, then the probability of
having k men in a sample of size N is

Pr(k |π,N) =

(
N
k

)
πk (1 − π)N−k

(k follows a binomial distribution). Assumption: independent sampling
with identical probability (i.i.d.)

Assume k = 2 and N = 6. We can now ask: What value for π makes
this outcome most likely? The answer is found by maximizing the
likelihood function

L(π|k ,N) =

(
N
k

)
πk (1 − π)N−k

with respect to π. ⇒ Choose π so that the first derivative (gradient) is
zero: ∂L(π|k ,N)/∂π = 0
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MLE – Example: Proportion of men
Instead of maximizing L(π|k ,N) directly, we can also maximize the
logarithm of L(π|k ,N), which is generally easier:

ln L(π|k ,N) = ln
(
N
k

)
+ k ln(π) + (N − k) ln(1 − π)

∂ ln L(π|k ,N)

∂π
= 0 +

∂k ln(π)

∂π
+
∂(N − k) ln(1 − π)

∂π

=
k
π

+
∂(N − k) ln(1 − π)

∂(1 − π)
∂(1 − π)
∂π

=
k
π
−

N − k
1 − π

set
∂ ln L
∂π

= 0 ⇒ π̂ =
k
N

=
2
6

=
1
3

MLE
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MLE for Linear Regression
Model:

Yi = β0 + β1Xi1 + · · ·+ βmXim + εi = X ′i β+ εi

εi
i.i.d
∼ N(0, σ) ⇒ Yi

i.i.d
∼ N(X ′i β, σ)

The probability density function for Yi is

f(Yi |X ′i β, σ) =
1

σ
√

2π
e−

1
2σ2 (Yi−X ′i β)

2
=

1
σ
φ

(
Yi − X ′i β

σ

)
where φ(z) = 1√

2π
e−z2/2 is the standard normal density, so that

L(β, σ|Y ,X) =
N∏

i=1

1
σ
φ

(
Yi − X ′i β

σ

)
The β̂ that maximizes L also minimizes

∑
(Yi − X ′i β)

2 ⇒ MLE = OLS
in this case (but only if ε is assumed to be normally distributed)
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MLE for Logit

Let Pi = Pr(Yi = 1) =
(
1 + e−(X

′
i β)

)−1
. The likelihood of a specific

observation can then be written as

Pr(Yi |Xi , β) = PYi
i (1 − Pi)

1−Yi =

Pi if Yi = 1

1 − Pi if Yi = 0

and the likelihood and log likelihood functions are

L(β|Y ,X) =
N∏

i=1

PYi
i (1 − Pi)

1−Yi

ln L(β|Y ,X) =
N∑

i=1

[Yi ln Pi + (1 − Yi) ln(1 − Pi)]

=
N∑

i=1

YiX ′i β −
N∑

i=1

ln
(
1 + eX ′i β

)
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MLE for Logit

Usually no closed form solution exists for the maximum of ln L so that
numerical optimization methods are used (e.g. the Newton-Raphson
method). The general procedure is to start with an initial guess for the
parameters and then iteratively improve on that guess until
approximation is “good enough”.

Care has to be taken if the (log) likelihood function (surface) is not
globally concave, i.e. if local maxima exist.

Luckily, the Logit model has a globally concave log likelihood function,
so that a single global maximum exists and the solution is
independent of the starting values.
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Large Sample Properties of MLE

Consistency: asymptotically unbiased (expected value of MLE
approaches true value with increasing N)

Efficiency: asymptotically minimal sampling variance

Normality: estimates are asymptotically normally distributed (MLE
are BAN, Best Asymtotic Normal estimator)
⇒ statistical inference can be based on normal theory (e.g. Wald test
for single coefficients, likelihood ratio test for nested models)

(Fox 1997)
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MLE: summary

Benefits of MLE
very flexible and can handle many kinds of models

desirable large sample properties

Drawbacks of MLE
may be biased and inefficient in small samples (MLE-Logit with
N < 100 not recommended; depends on model complexity; see e.g.
Peduzzi et al. 1996, Bagley et al. 2001)
Example: MLE estimate of variance of x is 1/N

∑
(xi − x̄)2, unbiased estimate is

1/(N − 1)
∑

(xi − x̄)2

requires distributional assumptions

generally no closed form solutions (but computers do the job)

numerical algorithms may not converge in some cases (e.g. in Logit if
there is perfect classification so that |β| → ∞)

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 97 / 188



Part VII

Logistic Regression: Inference

MLE and Statistical Inference

Significance Tests and Confidence Intervals

Likelihood Ratio Tests

Wald Test
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MLE and Statistical Inference
MLE theory shows:

The sampling distribution of ML parameter estimates is asymptotically
normal.

⇒ Therefore, statistical tests and confidence intervals can be based
on an estimate for the variance of the sampling distribution.

The variance-covariance matrix of an ML estimator for a parameter
vector θ is given as the negative of the inverse of the expected value
of the matrix of second derivatives of the log likelihood function.
(The matrix of second derivatives of ln L(θ) is called the Hessian. The
negative of the expectation of the Hessian is called the information matrix.)

Intuitive explanation: The second derivative indicates the curvature of
log likelihood function. If the function is flat, then there is much
uncertainty in the estimate. Variance reflects uncertainty.
Cautionary note: Results are only asymptotic, large N required
(N > 100)
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MLE and Statistical Inference

Curvature of the log likelihood function and sample size:
−
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MLE and Statistical Inference
Example: Logit model with only a constant β0, i.e. π = Pr(Y = 1) is a
constant.

MLE of π: π̂ = k
N , where k is the observed number of events

What are the variance and standard deviation (= standard error) of
the sampling distribution of π̂?

L(π|k ,N) =

(
N
k

)
πk (1 − π)N−k

ln L(π|k ,N) = ln
(
N
k

)
+ k ln(π) + (N − k) ln(1 − π)

ln L ′ =
∂ ln L
∂π

=
k
π
−

N − k
1 − π

= kπ−1 − (N − k)(1 − π)−1 ⇒ π̂ =
k
N

ln L ′′ =
∂2 ln L
∂π2 = −kπ−2 − (N − k)(1 − π)−2 = −

[
k
π2 +

N − k
(1 − π)2

]
Note: ln L ′′ < 0 for all π (concave), i.e. ln L(π̂) is maximum.
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MLE and Statistical Inference

ln L ′′ = −
[

k
π2 +

N − k
(1 − π)2

]
= −

(1 − π)2k + p2(N − k)

π2(1 − π)2 ·
N
N

= −
π2 − 2π k

N + k
N

1
Nπ

2(1 − π)2

E[k/N] = π

E[ln L ′′] = −
π2 − 2π2 + π
1
Nπ

2(1 − π)2
= −

π − π2

1
Nπ

2(1 − π)2
= −

π(1 − π)
1
Nπ

2(1 − π)2

= −
1

1
Nπ(1 − π)
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MLE and Statistical Inference

Variance: take negative of inverse of E[ln L ′′]

V(π̂) = −
1

E[ln L ′′]
=
π(1 − π)

N

Variance estimate: plug in estimate for π

V̂(π̂) =
π̂(1 − π̂)

N
=

k
N

(
1 − k

N

)
N

ŜE(π̂) =

√
π̂(1 − π̂)

N

⇒ (1 − α) confidence interval for π̂

π̂ ± z1−α/2

√
π̂(1 − π̂)

N

where z1−α/2 is the (1 − α/2) quantile of the standard normal (e.g.
z0.975 = 1.96 for the 95% CI)
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MLE and Statistical Inference

In general for β = [β1, β2, . . . , βm]T

Hessian

H =
∂2 ln L
∂β2 =


∂2 ln L
∂β1∂β1

∂2 ln L
∂β1∂β2

· · · ∂2 ln L
∂β1∂βm

...
...

. . .
...

∂2 ln L
∂βm∂β1

∂2 ln L
∂βm∂β2

· · · ∂2 ln L
∂βm∂βm


MLE Variance-Covariance Matrix

V(β̂) =


V(β̂1) V(β̂1, β̂2) · · · V(β̂1, β̂m)
...

...
. . .

...

V(β̂m, β̂1) V(β̂m, β̂2) · · · V(β̂m)

 = −
1

E[H]
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Significance Test for a Single Regressor

According to ML theory, parameter estimate βk is asymptotically
normal, i.e.

β̂k
a
∼ N(βk ,V(β̂k ))

Using the variance estimate V̂(β̂k ) we can therefore construct a
significance test for βk in the usual way.

Let the null hypothesis be H0 : βk = β0
k . The test statistic then is

Z =
β̂k − β

0
k

SE(β̂k )
with SE(β̂k ) =

√
V̂(β̂k )

(SE = standard error).

The null hypothesis is rejected on significance level α if |Z | > z1−α/2

where z1−α/2 is the (1 − α/2)-quantile of the standard normal
distribution.
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Significance Test for a Single Regressor
Usually: Test against zero on a 5% level

H0 : βk = 0 (i.e. β0
k = 0)

5% significance level (α = 0.05)

Test statistic: Z =
β̂k

SE(β̂k )

a
∼ N(0, 1)

reject H0 if |Z | > 1.96

alpha/2 = 0.025
(reject H0)

alpha/2 = 0.025
(reject H0)

f(z)

−1.96 0 1.96
z
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Confidence Interval for a Single Regressor

(1 − α)-Confidence Interval

β̂k ± z1−α/2 · SE(β̂k )

Usually: 95%-Confidence Interval[
β̂k − 1.96 · SE(β̂k ) , β̂k + 1.96 · SE(β̂k )

]
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Likelihood Ratio Tests
The ratios of the likelihoods of “nested” models can be used to
perform significance tests for general hypotheses.
Model A is “nested” in model B if it can be formed by imposing
constraints to model B. Example:

M1: logit[P(Y = 1)] = β0 + β1X1

M2: logit[P(Y = 1)] = β0 + β1X1 + β2X2

Model M1 is equal to model M2 with constraint β2 = 0. Therefore, M1

is nested in M2.
The log likelihood of the constrained model M1 cannot be larger than
the log likelihood of the unconstrained model M2:

ln L(M1) ≤ ln L(M2) or ln L(M2) − ln L(M1) ≥ 0

The approach can be used to test hypotheses involving multiple
parameters, e.g. a hypothesis that β1 = β2 = β3 = 0 or a hypothesis
that β1 ≥ β2.
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Likelihood Ratio Tests

Likelihood Ratio Test
General result: The likelihood ratio statistic

LR = G2 = −2 ln
(
L(MC)

L(MU)

)
= 2 ln L(MU) − 2 ln L(MC)

where MC is the constrained (restricted, nested, null) model and MU is the
unconstrained (full) model, is asymptotically chi-square distributed with
degrees of freedom equal to the number of independent constraints.

Example applications:
I overall LR test of the full model
I LR test of a single coefficient
I LR test of a subset of coefficients
I LR test of equality of two coefficients
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Overall LR Test of Full Model

Is the model significant at all? Does the model “explain” anything?

Null hypothesis:
H0: β1 = β2 = · · · = βm = 0

Models:

MC : logit[P(Y = 1)] = β0

MU: logit[P(Y = 1)] = β0 + β1X1 + β2X2 + · · ·+ βmXm

Test statistic:

LR = 2 ln L(MU) − 2 ln L(MC)
a
∼ χ2(m)

Reject H0 at the α level if LR > χ2
1−α(m)

[Note: The log likelihood of the null model in this case is
ln L(MC) = ln

(
N
k

)
+ k ln(k/N) + (N − k) ln(1 − k/N).]
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LR Test of a Single Coefficient

Is coefficient βk significant?

Null hypothesis:
H0: βk = 0

Models:

MC : Z = β0 + · · ·+ βk−1Xk−1 + βk+1Xk+1 · · ·+ βmXm

MU: Z = β0 + · · ·+ βk−1Xk−1 + βk Xk + βk+1Xk+1 · · ·+ βmXm

Test statistic:

LR = 2 ln L(MU) − 2 ln L(MC)
a
∼ χ2(1)

Reject H0 at the α level if LR > χ2
1−α(1)

The LR test of a single coefficient is asymptotically equivalent to the test
based on the Hessian discussed above.
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LR Test of a Subset Of Coefficients
Is any coefficient in a set of coefficients different from zero? Does the set
of coefficients jointly “explain” anything?

Note: This is different than testing each parameter separately!

Null hypothesis:
H0: βk = · · · = βl = 0

Models:

MC : Z = β0 + · · ·+ · · ·+ βmXm

MU: Z = β0 + · · ·+ βk Xk + · · ·+ βlXl + · · ·+ βmXm

Test statistic:

LR = 2 ln L(MU) − 2 ln L(MC)
a
∼ χ2(l − k + 1)

Reject H0 at the α level if LR > χ2
1−α(l − k + 1)
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LR Test of Equality of Two Coefficients
Is the difference between two coefficients significant?

Null hypothesis:
H0: βk = βl

Models:

MC : Z = β0 + · · ·+ γ(Xk + Xl) + · · ·+ βmXm

MU: Z = β0 + · · ·+ βk Xk + βlXl + · · ·+ βmXm

Test statistic:

LR = 2 ln L(MU) − 2 ln L(MC)
a
∼ χ2(1)

Reject H0 at the α level if LR > χ2
1−α(1)

The trick is to use the sum of the two variables in the restricted model.

See Jann (2005) and Gelman and Stern (2006) for some general
comments on interpreting differences between coefficients.
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Wald Test
An alternative, asymptotically equivalent approach to testing the
difference between nested models is the Wald test, which is based on
the variance-covariance matrix of the estimates.
Example: For the test of the null hypothesis that β1 is equal to β2, the
Wald statistic is

W =
(β̂1 − β̂2)

2

V̂(β̂1) + V̂(β̂2) + Ĉov(β̂1, β̂2)

a
∼ χ2(1)

See, e.g., Long (1997: 89pp.) for the general form of the test and
further details. The Wald test is analogous to the generalized F-test in
linear regression (Greene 2003:95pp.).
The advantage of the Wald test over the LR test is that only the full
model has to be estimated.
Some people prefer the LR test over the Wald test (especially in
moderate samples) because there is (weak) evidence that it is more
efficient and behaves less erratic. But note that both procedures can
be quite off in small samples.
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Relation between LR test and Wald test

LR test: Difference between ln L(β̂) and ln L(β0)

Wald test: Difference between β̂ and β0 weighted by curvature of log
likelihood, ∂2 ln L/∂β2

(Fox 1997)
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Significance Test of a Single Regressor in SPSS

SPSS reports a Wald statistic with one degree of freedom for the
individual tests of the single regressors.

The Wald statistic is equivalent to the square of Z of the usual
significance test discussed above in this case.

W =

 β̂k

SE(β̂k )

2
a
∼ χ2(1)

Reject H0: βk = 0 if W is larger than the (1 − α) quantile of the
chi-squared distribution with 1 degree of freedom.

Note: The square of a standard normally distributed variable is
chi-square distributed with 1 degree of freedom.

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 116 / 188



Part VIII

Logistic Regression: Diagnostics and Goodness-of-Fit

Pearson Chi-Square and Deviance

Residuals and Influence

Classification Table

Goodness-of-Fit Measures
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Pearson Chi-Square and Deviance

Two concepts to measure discrepancy between model and data
I Pearson statistic: difference between observed data and predicted

probabilities
I Deviance: difference between the likelihood of a “saturated” model

(= perfect model) and the likelihood of the fitted model

To formalize the concepts it is useful to think in “covariate patterns”
(distinct patterns of values in X) rather then observations.
Notation

I J: number of covariate patterns
I if some observations have the same X values, then J < N
I if each observation has its own unique covariate pattern, then J = N
I Xj : jth covariate pattern, j = 1, . . . , J
I nj : number of observations with covariate values equal to Xj
I Ȳj : the mean of Y (proportion of ones) among the observations with

with covariate pattern Xj
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Pearson Chi-Square and Deviance

Pearson X2

Difference between observed proportions Ȳj and predicted
probabilities π̂j = (1 + e−X ′j β)−1

Ej = Ȳj − π̂j , Ȳj ∈ [0, 1], π̂j ∈ [0, 1]⇒ Ej ∈ [−1, 1]

Pearson statistic

X2 =
J∑

j=1

r2
j , rj =

√
nj

Ȳj − π̂j√
π̂j(1 − π̂j)

Interpretation: Sum of variance weighted residuals

rj is called the “Pearson residual”

If J = N: X2 =
∑N

i=1 r2
i , ri = (Yi − π̂i)

/√
π̂i(1 − π̂i)
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Pearson Chi-Square and Deviance
Deviance

Discrepancy between the log likelihood L(β̂) of the estimated model
and the log likelihood LS of a “saturated” model (i.e. a model with one
parameter per covariate pattern)

Deviance

D = −2 ln
L(β̂)

LS

 = 2[ln LS − ln L(β̂)]

Since ln LS =
∑

j nj[Ȳj ln(Ȳj) + (1 − Ȳj) ln(1 − Ȳj)]

ln L(β̂) =
∑

j nj[Ȳj ln(π̂j) + (1 − Ȳj) ln(1 − π̂j)]

D =
J∑

j=1

d2
j , dj = ±

√
2nj

[
Ȳj ln

(
Ȳj

π̂j

)
+ (1 − Ȳj) ln

(
1 − Ȳj

1 − π̂j

)]
where sign of the deviance residual dj agrees with the sign of Ȳj − π̂j
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Pearson Chi-Square and Deviance

Deviance

If J = N:

D = −2 ln L(β̂) =
N∑

i=1

d2
i

with
di = ±

√
−2 [Yi ln(π̂i) + (1 − Yi) ln(1 − π̂i)]

since

ln Ls =
N∑

i=1

[Yi ln(Yi) + (1 − Yi) ln(1 − Yi)] = 0

.
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Pearson Chi-Square and Deviance
Overall goodness-of-fit test:

Large values for X2 or D provide evidence against the null hypothesis
that the model fits the observed data.

Think of a J × 2 table with distinct covariate patterns in the rows and
the values of Y (0 and 1) in the columns. X2 and D are the Pearson
statistic and the likelihood ratio statistic for the test of the difference
between the observed cell frequencies and the expected cell
frequencies using the fitted model.

The null hypothesis is rejected if X2 > χ2
1−α(J −m − 1) or

D > χ2
1−α(J −m − 1), respectively, where m is the number of

regressors in the model.

However, the test is only valid in a design with many observations per
covariate pattern. For example, if the model contains continuous
regressors, J will increase with N and the cell counts remain small.
As a consequence, X2 and D are not asymptotically chi-square
distributed.
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Pearson Chi-Square and Deviance

Hosmer-Lemeshow test

To avoid the problem of growing J with increasing N, Hosmer and
Lemeshow proposed a test based on grouped data (1980; Lemeshow
and Hosmer 1982)

I The data are divided into g (approx.) equally sized groups based on
percentiles of the predicted probabilities (⇒ g × 2 table)

I In each group the expected and observed frequencies are computed
for Y = 0 and Y = 1.

I A Pearson X2 statistic is computed from these cell frequencies in the
usual manner.

I The null hypothesis is rejected if the statistic exceeds the
(1 − α)-quantile of the χ2 distribution with g − 2 degrees of freedom.

For alternative approaches see the discussion in Hosmer and
Lemeshow (2000: 147pp.).
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Residuals and Influence
A goal of regression diagnostics is to evaluate whether there are
single observations that badly fit the model and exert large influence
on the estimate (see, e.g., Fox 1991, Jann 2006). We have less
confidence in estimates if they strongly depend on only a few
influential cases.

I Outliers: Observations for which the difference between the model
prediction and the observed value is large.

I Influence: The effect of an individual observation (or a group of
observations) on the estimate.

A popular measure is Cook’s Distance as an overall measure for the
influence of an observation on the estimated parameter vector.

Outliers or influential observations can be due to data errors. But they
can also be a sign of model misspecification.

The regression diagnostics tools, which were developed for linear
regression, can be translated to logistic regression (Pregibon 1981;
good discussion in Hosmer and Lemeshow 2000).
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Residuals and Influence
[For simplicity, assume J = N for the following discussion.]

As noted before, if Y is a binary variable, the difference between Yi

and πi = Pr(Yi = 1) is heteroscedastic:

V(Yi |Xi) = V(Yi − πi) = πi(1 − πi)

This suggests using the Pearson residual

ri =
Yi − π̂i√
π̂i(1 − π̂i)

as a standardized measure for the discrepancy between an
observation and the model prediction.

However, because π̂i is an estimate and the observed Yi has
influence on that estimate, V(Yi − π̂i) , πi(1 − πi) so that the variance
of ri is not 1 and the residuals from different observations cannot be
compared.
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Residuals and Influence
An improved measure is the standardized Pearson residual

rS
i =

ri
√

1 − hii

where hii = π̂i(1 − π̂i)X ′i V̂(β̂)Xi

rS
i has variance 1 and can be compared across observations. A large

value of rS
i indicates bad fit for observation i.

hii is called the leverage or hat value and is a measure for the
potential influence of an observation on the estimate. The leverage
mainly depends on how “atypical” an observation’s X values are.
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Residuals and Influence
Observations with a large residual and a large leverage exert strong
influence on the model estimate.
A measure to summarize this influence is Cook’s Distance

∆βi =
r2
i hii

(1 − hii)2 =
(rS

i )2hii

1 − hii

Other popular measures are the influence on the Pearson chi-square
statistic or the Deviance:

∆X2
i =

r2
i

1 − hii
= (rS

i )2 ∆Di ≈
d2

i

1 − hii

Large values indicate strong influence.
Problematic observations can be easily spotted using index plots of,
say, ∆βi . Another popular graph is to plot the statistic against the
predicted probabilities and use different colors/symbols for Yi = 0 and
Yi = 1.

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 127 / 188



Residuals and Influence: Example

“Did you ever cheat on your partner?” by age, sex, etc.

Model estimates:

. logit cheat male age highschool extraversion cheat_ok, nolog

Logistic regression Number of obs = 566
LR chi2(5) = 44.33
Prob > chi2 = 0.0000

Log likelihood = -294.4563 Pseudo R2 = 0.0700

cheat Coef. Std. Err. z P>|z| [95% Conf. Interval]

male -.0289207 .2194078 -0.13 0.895 -.4589521 .4011108
age .0303383 .0075396 4.02 0.000 .015561 .0451155

highschool -.1937281 .2138283 -0.91 0.365 -.6128239 .2253677
extraversion .2514374 .0835575 3.01 0.003 .0876676 .4152072

cheat_ok .2733903 .0739183 3.70 0.000 .128513 .4182675
_cons -3.793885 .5430144 -6.99 0.000 -4.858174 -2.729597
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Residuals and Influence: Example

Index plot of ∆β
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Residuals and Influence: Example

Plot of ∆β by prediction
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Residuals and Influence: Example

List problematic observations:

. list dbeta cheat male age highschool extraversion cheat_ok if dbeta>.1

dbeta cheat male age highsc˜l extrav˜n cheat_ok

379. .1088898 0 0 53.70551 0 6.666667 6
456. .2271219 0 0 107 1 4.333333 3

Observation 379 seems to be okay although somewhat atypical.
However, there appears to be a data error in observation 456
(age > 100). The data are from an online survey and respondents
had to pick their birth year from a dropdown list. Value 0 was stored if
the respondent did not make a selection. These invalid observations
were accidently included when computing the age variable.
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What to do about outliers/influential data?

Take a close look at the data.

Correct, or possibly exclude, erroneous data (only in clear-cut cases).

Compare models in which the outliers are included with models in
which they are excluded. If the main results do not change you’re on
the save side.

Think about the outliers and improve your model/theory because . . .
An apparently wild (or otherwise anomalous) observation is
a signal that says: “Here is something from which we may
learn a lesson, perhaps of a kind not anticipated
beforehand, and perhaps more important than the main
object of the study.” (Kruskal 1960)
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Goodness-of-Fit: Classification Table
Overall goodness-of-fit: How well does the estimated model describe
the observed data?
One way to asses the goodness-of-fit is to compare the observed
data with the “maximum probability rule” predictions

Ŷi =

0 if π̂i ≤ 0.5

1 if π̂i > 0.5

Classification table: Table summarizing the number of “true” and
“false” predictions

predicted

0 1

observed 0 true false

1 false true

Problem: Prediction table not very useful for extreme distributions (i.e.
if Ȳ is close to 0 or 1).
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Classification Table: Example
Example (H = 169): predicted

0 1

observed 0 25 47

1 15 82

Percentage of true predictions using the model:

25 + 82
169

= 0.63 = 63%

However: Unconditional prediction (i.e. predict modal category for all
observations, here: Y = 1) yields

15 + 82
169

= 0.57 = 57%

⇒ model improves proportion of true predictions by 6 percentage
points.
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Goodness-of-Fit Measures

It may be desirable to summarize the overall goodness-of-fit of a
model using a single number.

In linear regression this is done by the R-squared.

A number of fit measures imitating the R-squared have been
developed for logistic regression (and other models).

Critique: Scalar measures of fit should always be interpreted in
context. How high the value of such a measure should be for the
model to be a “good” model strongly depends on the research topic
and the nature of the data.
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Goodness-of-Fit Measures: R2 in Linear Regression

Various interpretations are possible for the R-squared, but in
comparison to linear regression these interpretations lead to different
measures in logistic regression. Two of the interpretations are:

I Proportion of explained variation in Y

R2 =

∑
(Ŷi − Ȳ)2∑
(Yi − Ȳ)2

= 1 −
∑

(Yi − Ŷi)
2∑

(Yi − Ȳ)2

I Transformation of the likelihood ratio (assumption: ε ∼ N(0, σ); L0 is
the likelihood of a model with just the constant)

R2 = 1 − (L0/L)2/N

R2 ∈ [0, 1], with higher values indicating better fit.
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Goodness-of-Fit Measures: Pseudo-R2

R2 measures can be constructed for logistic regression (or other
models) by analogy to one of the interpretations of R2 in linear
regression.

These measures are called pseudo-R-squared.
Some desirable properties:

I normalized to [0, 1]
I clear interpretation of values other than 0 and 1
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Pseudo-R2: Explained Variation

Efron’s pseudo-R2: explained variation based on predicted
probabilities

R2
Efron = 1 −

∑n
i=1(Yi − π̂i)

2∑n
i=1(Yi − Ȳ)2

∈ [0, 1]

In the case where J, the number of distinct covariate patterns, is
smaller then N, the statistic should be computed as (see Hosmer and
Lemeshow 2001:165)

R2
SSC = 1 −

∑J
j=1[nj(Ȳj − π̂j)]

2∑J
j=1[nj(Ȳj − Ȳ)]2

where nj is the number of observations with covariate pattern Xj and
Ȳj is the mean of Y among these observations.
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Pseudo-R2: Explained Variation

McFadden’s pseudo-R2 (sometimes called the “likelihood ratio
index”): use log likelihood in analogy to the sum of squares

I ln L0: log likelihood of model with just a constant as the total sum of
squares

I ln L1: log likelihood of the fitted model as the residual sum of squares

R2
McF =

ln L0 − ln L1

ln L0
= 1 −

ln L1

ln L0
∈ [0, 1]

The maximum value of 1 can only be reached if J, the number of
distinct covariate patterns is equal to N (see Hosmer and Lemeshow
2001:165 for a correction). In general, high values for R2

McF are hard
to reach and already values within 0.2 and 0.4 usually indicate a very
good fit.

Interpretation of values other than 0 and 1 not clear.
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Pseudo-R2: Explained Variation

McFadden’s pseudo-R2 increases if variables are added to the
model. A proposed correction is

R̃2
McF = 1 −

ln L1 −m
ln L0

where m is the number regressors. If adding variables to a model,
R̃2

McF will only increase if the log likelihood increases by more than 1
for each added variable.

R̃2
McF can be used to compare models (if they are based on the same

set of observations)
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Pseudo-R2: Transformation of Likelihood Ratio

Maximum likelihood pseudo-R2 / Cox and Snell’s pseudo-R2

R2
ML = 1 −

(
L0

L1

)2/N

= 1 − e−LR/N

where LR is the likelihood ratio chi-square statistic.

Cragg and Uhler pseudo-R2 / Nagelkerke pseudo-R2: The maximum
of R2

ML is 1 − (L0)
2/N. This suggests the following correction

R2
N =

R2
ML

1 − (L0)2/N

so that the measure can take on values between 0 and 1.
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Predictive Pseudo-R2 based on Classification Table

The information can in the classification table (see above) can be
used to construct a R2 that reflects the prediction errors according to
the “maximum probability rule”

Let Ŷi = 0 if π̂i ≤ 0.5 and Ŷi = 1 if π̂i > 0.5, then

R2
Count =

#(Yi = Ŷi)

N

Even without explanatory variables (i.e. if we use the mode of
outcome categories as prediction for all observations) R2

Count is at
least 50%.
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Predictive Pseudo-R2 based on Classification Table

Let M = max[#(Y = 0),#(Y = 1)], then

R̃2
Count =

#(Yi = Ŷi) −M
N −M

R̃2
Count has a PRE interpretation (Proportional Reduction in Error). It

indicates the proportional reduction in prediction errors compared to a
model with only a constant.

Problem: R̃2
Count is not very sensitive and is often 0 (especially if

Pr(Y = 1) is generally close to 0 or 1).
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Information Measures

Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC)

AIC =
−2 ln L(β̂) + p

N

BIC = −2 ln L(β̂) + p ln(N)

where p is the number of parameters in the model

General interpretation: the smaller AIC or BIC, the better the model fit

AIC and BIC can be used to compare models (also non-nested
models). The model with the smaller AIC or BIC is preferred.

Interpretation of BIC differences (strength of evidence favoring the
model with the smaller BIC): 0-2 weak, 2-6 positive, 6-10 strong, > 10
very strong
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Part IX

Logistic Regression: Specification

Specification Error

Excursus: Categorical Predictors

Nonlinearity

Non-Additivity and Interaction Effects

Numerical Problems: Zero Cells, Complete Separation, Collinearity
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Specification Error

Assuming the Logit model is essentially correct, i.e. that the model
has the general form logit[Pr(Y = 1)] = Xβ, we can still misspecify
the right hand side (RHS) of the equation.

Some specification errors are:
I Omitted variables: Hard to detect with statistical approaches since

this is more of a theoretical issue. If an important variable Z that affects
both Y and X is missing in the model, then the estimate of the effect of
X on Y will be biased (since it also contains the “indirect” effect of Z on
Y through X ).

I Nonlinearity: The effect of X on logit[Pr(Y = 1)] might be nonlinear.
This is also a theoretical issues to some degree, but departures from
linearity can be detected statistically. General procedure: Model the
effect nonlinearly and compare the results.

I Non-additivity: Assume the model contains X1 and X2. The effect of
X1 is assumed to be independent of the value of X2. This might not be
true. Non-additive model can be constructed using interaction terms.
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Excursus: Categorical Predictors

Binary categorical variables (e.g. sex) can be included in a Logit
model without problem. The effect measures the difference in the log
odds between the two groups defined by the variable.

What to do if an independent variable X is categorical and has more
than two categories (e.g. religious denomination)? We cannot just
include the variable in the model because the parameter estimate
would arbitrary (e.g. a change in the distances between the codes for
the categories, which would not change the meaning of the variable,
would change yield a different parameter estimate).

The solution is to divide the variable into separate indicator variables,
one for each category.
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Excursus: Categorical Predictors

To be precise, if the variable has K categories, we only need K − 1
indicator variables. One of the categories is chosen as the reference
category.

For example, define

Xj =

1 if X = j

0 else
, j = 1, . . . ,K − 1

The effect βj then measures the difference between group j and the
reference group K . (You can also use any other category as the
reference category.)

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 148 / 188



Excursus: Categorical Predictors

The coding above is called the dummy or indicator coding. Other
coding schemes can be used. Two examples are given bellow.

Effect coding: deviation from “grand mean” (the effect for the
reference category is the negative of the sum of the effects for the
other categories)

Xj =


1 if X = j

−1 if X = k

0 else

, j = 1, . . . ,K − 1

Split coding for ordinal variables: the parameters represent the
differences form one category to the next

Xj =

1 if X ≥ j

0 else
, j = 2, . . . ,K
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Nonlinear Effects

The effect of a variable X on the log odds may be nonlinear.

Some strategies to model nonlinear effects:
I categorize the variable and use dummies (or splines); very flexible,

however, choice of categories is arbitrary
I if a variable is discrete and has only few values, the most flexible way to

model the effect is to use separate dummies for the values
I polynomials (quite flexible, but bad for extrapolation)
I nonlinear transformations of variables
I combinations of the above

For data exploration, i.e. as a first check for nonlinearity,
“non-parametric” approaches may be useful. For example, it is often
helpful to visualize relationships using scatterplot smoothers such as
the the Lowess (see Fox 2000 for an overview).
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Nonlinear Effects: Polynomials

A nonlinear relationship can be modeled by adding powers of X to the
equation

logit[Pr(Y = 1)] = β0 + β1X + β2X2 + β3X3 + . . .

Most common is the quadratic model model⇒ parabolic effect
(higher order models are usually hard to interpret)

lo
g 

od
ds

0 2 4 6 8 10
x

b1 > 0, b2 < 0

lo
g 

od
ds

0 2 4 6 8 10
x

b1 < 0, b2 > 0

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 151 / 188



Nonlinear Effects: Transformations

Example: take the logarithm of X

logit[Pr(Y = 1)] = β0 + β1 ln(X)

lo
g 

od
ds

0 2 4 6 8 10
x

b > 0

lo
g 

od
ds

0 2 4 6 8 10
x

b < 0

Interpretation: Effect of proportional change in X
I If X is increased by one percent, then the log odds change by approx.
β/100 (to be precise: β · ln(1.01))

I Odds ratio: a one percent increase in X changes the odds by approx.
β1 percent (the odds ratio is 1.01β)⇒ elasticity
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Non-Additivity and Interaction Effects

The effect of a variable X1 may depend on the value of another
variable X2. Think of the effect of getting married on the probability to
be in the labor force. Probably the effect is different for men and
women.

Non-additivity: This means that if X1 and X2 change simultaneously,
then the effect of this simultaneous change is not simply the sum of
the two separate effects.

Non-additive models can be fitted by including products of variables
(“interaction terms”):

logit[P(Y = 1)] = β0 + β1X1 + β2X2 + β3X1X2

For example, the effect of X1 in this model is β1 + β3X3

When computing results such as marginal effects or discrete change
effects, these dependencies have to be taken into account.
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Zero Cells

For categorical covariates there is sometimes no variation in Y for
one of the groups. The Logit model does not converge in this case
because |β| → ∞

Some software packages automatically detect the problem and
remove the corresponding observations and variables from the
model, but not all packages do.

Detection: many iterations, huge parameter estimates, huge or
missing standard errors

Solutions: combine categories if it makes sense, exact logistic
regression, Bayesian methods
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Complete Separation

A similar problem occurs if there is complete separation for a
continuous variable, e.g. if Y = 0 for X < x∗ and Y = 1 for X > x∗.

This means that X is a “perfect” predictor.

Congratulations!

However, usually such situations arise due to errors by the
researcher.
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Complete Separation

Example for almost complete separation: Effect of minimum price in
an online auction on whether the product was sold

. logit sold ratings stbid date, nolog

Logistic regression Number of obs = 167
LR chi2(3) = 192.90
Prob > chi2 = 0.0000

Log likelihood = -19.301401 Pseudo R2 = 0.8333

sold Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratings .0319446 .0144293 2.21 0.027 .0036638 .0602255
stbid -.050882 .0121951 -4.17 0.000 -.074784 -.0269799
date -.0507112 .0223791 -2.27 0.023 -.0945734 -.0068489
_cons 26.89204 6.552966 4.10 0.000 14.04846 39.73562

Note: 0 failures and 21 successes completely determined.

. logit sold ratings date, nolog

Logistic regression Number of obs = 167
LR chi2(2) = 5.23
Prob > chi2 = 0.0731

Log likelihood = -113.13655 Pseudo R2 = 0.0226

sold Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratings .0099287 .0084343 1.18 0.239 -.0066023 .0264597
date .0112851 .0052426 2.15 0.031 .0010097 .0215604
_cons -.0953283 .1809954 -0.53 0.598 -.4500728 .2594163
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Complete Separation or Perfect Determination
Example: Effect of minimum price in an online auction on whether the
product was sold
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Collinearity

Complete collinearity: If a predictor is a linear combination of one or
more other predictors in the equation then the single effects cannot
be separated. Example: K dummies for a variable with K categories.

dK = 1 −
K−1∑
k=1

dk

Almost complete collinearity: If two (or more) covariates are closely
related, then there is only little information to separate the effects of
the covariates (⇒ large standard errors)

The solution to collinearity problems depends on context.
I If the variables are different measures for the same: use only one or

use an index
I If variables overlap by definition: create non-overlapping variables
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Collinearity
Example: Effect of net minimum price and gross minimum price in an
online auction (the gross price includes shipping)

. logit sold netminprice grossminprice, nolog

Logistic regression Number of obs = 167
LR chi2(2) = 184.47
Prob > chi2 = 0.0000

Log likelihood = -23.515457 Pseudo R2 = 0.7968

sold Coef. Std. Err. z P>|z| [95% Conf. Interval]

netminprice .1549288 .0818699 1.89 0.058 -.0055332 .3153908
grossminpr˜e -.1935158 .0864308 -2.24 0.025 -.3629171 -.0241146

_cons 24.09443 5.751801 4.19 0.000 12.82111 35.36775

Note: 0 failures and 19 successes completely determined.

. gen shipping = grossminprice - netminprice

. logit sold netminprice shipping, nolog

Logistic regression Number of obs = 167
LR chi2(2) = 184.47
Prob > chi2 = 0.0000

Log likelihood = -23.515457 Pseudo R2 = 0.7968

sold Coef. Std. Err. z P>|z| [95% Conf. Interval]

netminprice -.038587 .0087499 -4.41 0.000 -.0557365 -.0214376
shipping -.1935158 .0864308 -2.24 0.025 -.3629171 -.0241146
_cons 24.09443 5.751801 4.19 0.000 12.82111 35.36775

Note: 0 failures and 19 successes completely determined.

Diekmann/Jann (ETH Zurich) Regression Models for Categorical Data ZA Spring Seminar 2008 159 / 188



Part X

Probit and Latent Variable Model

Alternatives to Logit

The Probit Model

Latent Variable Model

Example: Logit versus Probit
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Alternatives to Logit
The Logit model is

Pr(Y = 1|X) = F(Xβ) =
exp(Xβ)

1 + exp(Xβ)

We can use other (typically s-shaped) functions in place of F(Xβ)
instead of the logistic function

(Aldrich/Nelson 1984)
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The Probit Model
One such alternative is the Probit model which uses the cumulative
normal distribution

Pr(Y = 1|X) = Φ(Z) =

∫ Z

−∞

1
√

2π
exp(−u2/2) du

or: Φ−1(Pr(Y = 1|X)) = β0 + β1X1 + · · ·+ βmXm

The Logit and Probit are very similar:

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

X

P

standard normal
standard logistic
standardised logistic
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The Probit Model

Interpretation is of coefficients is similar to the Logit model

Marginal effect:

∂Pr(Y = 1|X)

∂Xk
=

[
1
√

2π
exp(−Z2/2)

]
βj = φ(Z)βj

Discrete change effect:

∆ Pr(Y = 1|X)

∆Xj
= Φ[· · ·+ βk (Xk + 1) + · · · ] − Φ[· · ·+ βk Xk + · · · ]
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Latent Variable Model

The Probit model and the Logit model can be expressed as latent
variable models.

The conceptual idea is that there is an unobserved variable Y∗ that
reflects the propensity of Y to take on value 1 and is related to the
covariates in a linear way.

The model is:

Y∗ = Xβ+ ε with Y =

1 if Y∗ > 0

0 if Y∗ ≤ 0

Discrete choice models: Y∗ can be interpreted as the difference
between the utilities of the two alternatives (plus error)
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Latent Variable Model

(Long 1997)
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Latent Variable Model

Expressed this way, the only difference between the Logit model and
the Probit model then is that they make a different assumption about
the distribution of ε

Probit: ε has a standard normal distribution, N(0, 1)

Logit: ε has a standard logistic distribution, exp(ε)/[1 + exp(ε)]

The standard deviation of ε in the Logit model is π/
√

3. Therefore the
coefficients from the Logit model are usually about π/

√
3 ≈ 1.8 times

larger than the coefficients from the Probit model.

Logit versus Probit

βLogit ≈ 1.8 · βProbit
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Example: Logit versus Probit

. estout, cells("b Xmfx_dydx(label(MargEfct))" "t(par)")

LOGIT PROBIT
b/t MargEfct b/t MargEfct

educ .1493077 .0285554 .0791481 .0258561
(3.673453) (3.582843)

age -.0380774 -.0072824 -.020756 -.0067806
(-5.212636) (-5.211616)

k5 -1.171423 -.2240373 -.6776337 -.2213693
(-8.855418) (-9.153815)

k618 -.2328272 -.0445287 -.1340417 -.0437887
(-2.983747) (-2.888898)

protestant .1803333 .0344891 .1072967 .0350517
(1.201285) (1.217839)

inc1000 -.066502 -.0127187 -.0405756 -.0132552
(-3.474943) (-3.585695)

_cons 1.490499 .9182765
(2.62552) (2.928594)
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Part XI

Generalizations

Ordered Logit/Probit

Multinomial Logit

Conditional Logit
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More Than Two Categories

Up to now we assumed that Y , the dependent variable, has only two
values, 0 and 1.

The discussed approaches can be generalized to polytomous
variables with more than two values.
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Ordered Logit/Probit

The values of Y have a natural order.

Examples:
I “How satisfied are you with your life?” 1 = “not at all”, 2 = “a bit’, 3 =

“very much”
I Social class: lower, middle, upper

Such variables are often analyzed using linear regression.

However, linear regression makes the assumption that the “distances”
between the categories are the same.

Since this assumption may be wrong, linear regression might be
biased, and it is worthwhile to analyze such data using techniques
that do not assume interval data.

In general, using linear regression is less problematic if Y has many
values.
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Ordered Logit/Probit

Ordered Logit/Probit can be represented using the latent variable
model.

Y∗ = β0 + β1X1 + · · ·+ βmXm + ε

with

Y =


1 if Y∗ < τ1
2 if τ1 ≤ Y∗ < τ2
· · ·

J if τJ−1 ≤ Y∗

τ1, . . . , τJ−1 are the thresholds that map the continuous Y∗ to the
discrete Y

(Long 1997)
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Ordered Logit/Probit

The difference between ordered Logit and ordered Probit lies again in
the assumed distribution for the error term.

I Probit: ε has a standard normal distribution
I Logit: ε has a standard logistic distribution

(Long 1997)
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Ordered Logit/Probit: Interpretation

The raw coefficients of ordered Logit/Probit are expressed in terms of
the latent variable Y∗.

The signs of the coefficients have a clear interpretation: If the effect is
positive, the probability Y to take on a higher value increases (and
vice versa).

In the case of the ordered Logit an odds ratio interpretation is
possible: If Xk is increased by one unit, then the odds of Y being
equal to j or less are changed by factor exp(−βk ).

For detailed interpretation, marginal effects and discrete change
effects on the probabilities of the categories can be computed (see
Long 1997 for details). However, note that these effects are category
specific (separate effect for each category).
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Ordered Logit/Probit: Interpretation
The probability of Y = j given variables X is

Pr(Y = j|X) = F(τj − Xβ) − F(τj−1 − Xβ)

where τ0 = −∞ and τj = ∞ and F() denotes the cumulative normal
distribution or logistic.
Marginal effect

∂Pr(Y = j|X)

∂Xk
= βk [f(τj−1 − Xβ) − f(τj − Xβ)]

Discrete change

∆ Pr(Y = j|X)

∆Xk
= F(τj−· · ·−βk (Xk +1)−. . . )−F(τj−1−· · ·−βk Xk −. . . )

Note that the sign of a marginal effect or discrete change effect may
be different than the sign of βk . The sign may even change over the
range of Xk .
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Ordered Logit/Probit: Example
. fre weffort, nomissing

weffort work effort beyond what is required

Freq. Percent Cum.

1 none 124 6.01 6.01
2 only a little 175 8.49 14.50
3 some 927 44.96 59.46
4 a lot 836 40.54 100.00
Total 2062 100.00

. esttab, mtitles eqlabels(none) wide compress

(1) (2) (3)
LRM OPROBIT OLOGIT

female 0.106* (2.50) 0.147* (2.50) 0.229* (2.33)
parttime -0.303*** (-6.57) -0.418*** (-6.62) -0.704*** (-6.56)
selfemp 0.224*** (4.19) 0.374*** (4.91) 0.688*** (5.28)
educ 0.0158* (2.02) 0.0194 (1.81) 0.0300 (1.65)
_cons 3.027*** (31.20)
cut1 -1.365*** (-9.96) -2.469*** (-10.33)
cut2 -0.862*** (-6.40) -1.484*** (-6.47)
cut3 0.464*** (3.47) 0.733** (3.23)

N 2062 2062 2062

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001
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Multinomial Logit

Nominal variable: The categories have no natural order.

The multinomial Logit is used for nominal variables or for ordered
variables where the ordering is questionable (e.g. occupational
attainment)

The model has many parameters! There is one set of parameters for
each category of Y .
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Multinomial Logit

The probabilities of the different outcomes of Y are expressed as

Pr(Y = j|X) =
exp(Xβj)∑J
`=1 exp(Xβ`)

with β set to zero for one of the outcomes.

The outcome for which the β vector is set to zero is called the “base
outcome” or the “reference category”

The parameter estimates of the multinomial Logit therefore express
differences compared to the base outcome.

Note that the binary Logit model is a special case of the multinomial
Logit.
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Multinomial Logit: Odds

The odds of outcome j versus outcome m are

Pr(Y = j|X)

Pr(Y = m|X)
=

Pj

Pm
=

exp(Xβj)∑J
`=1 exp(Xβ`)

exp(Xβm)∑J
`=1 exp(Xβ`)

=
exp(Xβj)

exp(Xβm)

Taking the logarithm yields

ln(Pj/Pm) = X(βj − βm)

and the partial derivative is:

∂ ln(Pj/Pm)

∂Xk
= βkj − βkm
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Multinomial Logit: Odds

The parameters in the multinomial Logit can therefore be interpreted
as follows.

Log Odds: If Xk is increased by one unit the log of the odds of
outcome j against outcome m changes by βkj − βkm.

Odds: If Xk is increased by one unit the odds of outcome j against
outcome m (the “relative risk ratio”) changes by factor exp(βkj − βkm).
If m is the base outcome: βkm = 0

I Log Odds: If Xk is increased by one unit the log of the odds of outcome
j against the base outcome changes by βkj .

I Odds: If Xk is increased by one unit the odds of outcome j against the
base outcome changes by exp(βkj).
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Multinomial Logit: Partial Effect and Discrete Change

Also for the multinomial Logit we can compute marginal effects and
discrete change effects. Similar to the ordered Logit/Probit, the
direction of these effects may not correspond to the signs of the
coefficients and the direction may also depend on the values of the
covariates for which the effects are computed.

Recall that Pr(Y = j|X) = exp(Xβj)
/∑J
`=1 exp(Xβ`)

Partial effect:

∂Pr(Y = j|X)

∂Xk
= Pr(Y = j|X)

βkj −

J∑
`=1

βk` Pr(Y = `|X)


Discrete change:

∆ Pr(Y = j|X)

∆Xk
= Pr(Y = j|X ,Xk + 1) − Pr(Y = j|X)
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Multinomial Logit: Example

Labor force status by sex and education

. fre lfstatus, nomissing

lfstatus

Freq. Percent Cum.

1 full time 1267 44.60 44.60
2 part time 538 18.94 63.53

3 selfemployed 285 10.03 73.57

4 not in labor force 751 26.43 100.00
Total 2841 100.00
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Multinomial Logit: Example

. quietly mlogit lfstatus female educ

. quietly prchange

. quietly estadd prchange, adapt

. estout, cell("b se t(fmt(2)) p(fmt(3)) dc(label(DisChg))")

b se t p DisChg

full time
female 0 . . . -.4035242
educ 0 . . . .0224239
_cons 0 . . .

part time
female 2.76204 .1427824 19.34 0.000 .2668968
educ .0272368 .0250682 1.09 0.277 .017066
_cons -2.856912 .3279246 -8.71 0.000

selfemployed
female .4184821 .1375259 3.04 0.002 -.052557
educ .0128819 .0274198 0.47 0.638 .0086798
_cons -1.78688 .340294 -5.25 0.000

not in lab˜e
female 1.725244 .1025924 16.82 0.000 .1891844
educ -.0981816 .0243676 -4.03 0.000 -.0481697
_cons -.28136 .2915872 -0.96 0.335
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Conditional Logit

The conditional Logit is a variant on the multinomial Logit that can be
applied if the data contain alternative specific information.

I Multinomial Logit: X variables are characteristics of the individuals;
they vary over individuals

I Conditional Logit: Additional variables Z that reflect characteristics of
the categories of Y (the “alternatives”)

Examples are the traffic mode choice where travel costs and time are
known for each mode or the choice of consumer goods or services
where various characteristics of the good or service are known.
The shape of the data set is different for conditional Logit than for
multinomial Logit:

I Multinomial Logit: one row per individual
I Conditional Logit: one row per alternative (including a variable

identifying the individual and a variable indicating the chosen
alternative)
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Conditional Logit

The probability of choosing alternative J given variables X that vary
by individual and variables Z that vary by alternative (and individual)
is expressed as

Pr(Y = j|X ,Z) =
exp(Xβj + Zjγ)∑J
`=1 exp(Xβ` + Z`γ)

Odds interpretation of γ: If the difference in Zk between alternative j
and alternative m is increased by 1 unit then the odds of alternative j
over alternative m change by factor exp(γk )
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Further Topics

Models for count data

Models for limited or truncated data

Complex samples, weights

Panel data models, multilevel models

GLM (Generalized Linear Models)

Log-linear models

Nonparametric methods

Causal inference, endogeneity, sample selection correction
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