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Summary. The paper considers panel data methods for estimating ordered logit models with
individual-specific correlated unobserved heterogeneity. We show that a popular approach is
inconsistent, whereas some consistent and efficient estimators are available, including minimum
distance and generalized method-of-moment estimators. A Monte Carlo study reveals the good
properties of an alternative estimator that has not been considered in econometric applications
before, is simple to implement and almost as efficient. An illustrative application based on data
from the German Socio-Economic Panel confirms the large negative effect of unemployment
on life satisfaction that has been found in the previous literature.
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1. Introduction

When estimating life satisfaction equations, or analysing determinants of job satisfaction or
self-assessed health, researchers are often concerned about unobserved heterogeneity. Such het-
erogeneity can result from omitted variables or from subjective differences in anchoring of
responses on the ordered response scale. If unaccounted for, heterogeneity will generally bias
the estimated effects. Panel data offer a promising solution to this problem since the longitudinal
information can be exploited to construct consistent estimators provided that the unobserved
heterogeneity is time invariant.

Unfortunately, there is no consensus in the past literature on how to implement a fixed
effects estimator for the ordered logit model. All proposals rely on conditional logit estima-
tion of a dichotomized response (Chamberlain, 1980). In an early application, Winkelmann
and Winkelmann (1998) used a single dichotomization at a constant value for all individu-
als to estimate the effect of unemployment on life satisfaction. This estimator is simple to
implement but it does not use all the available information and is thus inefficient. Das and
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van Soest (1999) obtained an efficient estimator for the fixed effects ordered logit model by
combining all possible dichotomizations by using a two-step minimum distance (MD) method.
Ferrer-i-Carbonell and Frijters (2004) proposed an individual-specific dichotomization to
reduce the variance of the estimator. Whereas the MD estimator has not been used in the
subsequent literature, applications of the Ferrer-i-Carbonell and Frijters (FF) estimator are
quite frequent and include Frijters et al. (2004a,b, 2005), Kassenboehmer and Haisken-DeNew
(2009), Booth and van Ours (2008), D’Addio et al. (2007), Schmitz (2011) and Jones and Schurer
(2011).

The methodological contribution of this paper is twofold. First, we show that the FF estima-
tor and related approaches are inconsistent. We construct a simple analytical counterexample
demonstrating that the expected score of the log-likelihood function is not equal to 0 at the true
parameter values. Moreover, a set of Monte Carlo simulations shows that the bias can be large
and can affect coefficients as well as ‘trade-off’ ratios of coefficients.

Second, we explore three alternatives to MD estimation which are all consistent and efficient,
or at least nearly efficient, as well: the generalized method of moments (GMM), empirical
likelihood (EL) and an application of composite likelihood estimation due to Mukherjee et al.
(2008) that we refer to as ‘blow-up and cluster’ (BUC). The BUC estimator is very simple to
implement. Moreover, although not asymptotically efficient, the BUC estimator performs well
in small samples. In fact, we do not find any noticeable losses of efficiency relative to the MD,
GMM and EL estimators in our Monte Carlo simulations.

The performance of the various estimators is then compared in an application, where the
ordered response variable ‘life satisfaction’ is modelled as a function of a number of socio-
economic characteristics, among them current unemployment. The data are from the Ger-
man Socio-Economic Panel for the years 2001–2011. Our results show substantial differences
between the estimated BUC, MD and FF coefficients of the fixed effects ordered logit model. In
accordance with our Monte Carlo results, the FF estimate of the unemployment effect is about
10% smaller in absolute value than the BUC estimate. Plant closure adds to the negative effect
of unemployment but the difference is not statistically significant.

The paper proceeds as follows. Section 2 reviews the various estimators for the fixed effects
ordered logit model. Section 3 reports results from a Monte Carlo study to compare the per-
formance of the various estimators as a function of sample size (the number of individuals and
number of time periods) as well as number of ordered categories. In Section 4, the methods are
illustrated in an analysis of the effect of unemployment on life satisfaction. Section 5 concludes.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Econometric methods

2.1. Fixed effects ordered logit model
The fixed effects ordered logit model relates the latent variable yÅ

it for individual i at time t to a
linear index of observable characteristics xit and unobservable characteristics αi and "it :

yÅ
it =x′

itβ +αi + "it , i=1, : : : , N, t =1, : : : , T: .1/

The time invariant part of the unobservables, αi, may or may not depend on xit . One can either
make an assumption regarding the distribution of αi (or the joint distribution of αi and xit) or
else treat αi as a fixed effect. This paper considers estimation under the fixed effects approach.
The observed ordered variable yit is tied to the latent variable by the observation rule
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yit =k if τik <yÅ
it � τik+1, k =1, : : : , K, .2/

where individual-specific thresholds τi are increasing (τik � τik+1∀ k), τi1 =−∞, and τiK+1 =∞.
Moreover, the fixed effects ordered logit model assumes that "it are independent and identically
distributed with logistic cumulative distribution function

F."it|xit , αi/=F."it/= 1
1+ exp.−"it/

≡Λ."it/: .3/

Hence, the probability of observing outcome k for individual i at time t is given by

Pr.yit =k|xit , αi/=Λ.τik+1 −x′
itβ −αi/−Λ.τik −x′

itβ −αi/, .4/

which depends not only on β and xit , but also on αi, τik and τik+1. It is clear from equation (4)
that only τik −αi ≡αik is identified. Moreover, under fixed T asymptotics, estimation of αik uses
information only from a finite number of observations even as the total number of observations
NT grows without bound. Thus, the fixed effects αik cannot be estimated consistently and, in
general, their inconsistency spills over to inconsistency of the parameters that are common to
all observations. This situation is known as the incidental parameters problem (Neyman and
Scott, 1948; Lancaster, 2000). In short panels, the resulting bias in β̂ can be substantial (Abre-
vaya, 1997; Greene, 2004). Instead, a consistent estimator of β is obtained from collapsing yit

into a binary variable and then applying conditional maximum likelihood (CML) estimation
(Andersen, 1970; Chamberlain, 1980).

The CML estimator is well known, but we present it nevertheless in detail to fix the notation.
Let dk

it denote the binary dependent variable that results from dichotomizing the ordered vari-
able at the cut-off point k: dk

it =1.yit �k/. k can be any integer between 2 and K. By construction,
Pr.dk

it = 0/= Pr.yit < k/=Λ.τik − x′
itβ −αi/, and Pr.dk

it = 1/= 1 −Λ.τik − x′
itβ −αi/. Now con-

sider the joint probability of observing dk
i = .dk

i1, : : : , dk
iT /′ = .ji1, : : : , jiT /′ with jit ∈{0, 1}. The

sum of all the individual outcomes over time is a sufficient statistic for αi as

Pk
i .β/≡Pr

(
dk

i = ji

∣∣∣∣∣
T∑

t=1
dk

it =gi

)
= exp.j′

ixiβ/∑
j∈Bi

exp.j′xiβ/
.5/

does not depend on αi and the thresholds. In equation (5), ji = .ji1, : : : , jiT /, xi is the T × L

matrix with tth row equal to xit , L is the number of regressors and gi =ΣT
t=1 jit . The sum in the

denominator goes over all vectors j which are elements of the set Bi

Bi =
{

j ∈{0, 1}T

∣∣∣∣∣
T∑

t=1
jt =gi

}
,

i.e. over all possible vectors of length T which have as many elements equal to 1 as the actual
outcome of individual i, gi. The number of j-vectors in Bi is(

T

gi

)
= T !

gi!.T −gi/!
:

Chamberlain (1980) showed that maximizing the conditional log-likelihood

LLk.b/=
N∑

i=1
log{Pk

i .b/} .6/

gives a consistent estimator for β, denoted by β̂
k

and henceforth referred to as the Chamberlain
estimator.
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The first-order conditions are Σi s
k
i .b/=0 where

sk
i .b/= @ log{Pk

i .b/}
@b

=x′
i

⎧⎪⎨
⎪⎩dk

i − ∑
j∈Bi

j
exp.j′xib/∑

l∈Bi

exp.l′xib/

⎫⎪⎬
⎪⎭ .7/

and the asymptotic variance of β̂
k

is given by

Avar.β̂
k
/=−E{Hk

i .β/}−1 =E{sk
i .β/sk

i .β/′}−1, .8/

which can be estimated by averaging over individual Hessians

Hk
i .b/= @2 log{Pk

i .b/}
.@b/.@b/′

=− ∑
j∈Bi

exp.j′xib/∑
l∈Bi

exp.l′xib/

×
(

x′
ij − ∑

m∈Bi

exp.m′xib/∑
l∈Bi

exp.l′xib/
m′xi

)(
x′

ij − ∑
m∈Bi

exp.m′xib/∑
l∈Bi

exp.l′xib/
m′xi

)′
: .9/

An important property of the Chamberlain estimator is that individuals with constant dk
it do

not contribute to the conditional likelihood function, since Pr.dk
it = 1|ΣT

t=1 dk
it = T/ = Pr.dk

it =
0|ΣT

t=1 dk
it = 0/ = 1. However, the ordered dependent variable can be dichotomized at different

cut-off points, resulting in several consistent Chamberlain estimators. With K ordered outcomes,
there are K −1 such estimators, and they employ information from different groups of individ-
uals, depending on who crosses the cut-off and thus has variation in the dichotomized variable.
For each individual there is at least one k = k̃ such that dk̃

it is not constant, unless yi1 = : : : =yiT .
This feature is exploited by the individual-specific cut-off estimators that are discussed in the
next section.

2.2. Individual-specific cut-off points
Ferrer-i-Carbonell and Frijters (2004) suggested the use of a single but distinct, in some sense
‘optimal’, cut-off point for each individual. A compact way of writing the FF estimator is by
way of a weighted conditional log-likelihood function

LLFF.b/=
N∑

i=1

K∑
k=2

wk
i log{Pk

i .b/}, .10/

where Pk
i .b/ is defined as in equation (5), wk

i = 0, 1 and ΣK
k=2 wk

i = 1. This objective function is
maximized with respect to b, conditionally on the individual’s weight vector wk

i , k = 2, : : : , K.
The crucial question is where to dichotomize the dependent variable or, equivalently, which
wk

i to set to 1. The FF approach is to calculate for every individual all Hessian matrices under
different cut-off points and then to choose the cut-off with the smallest Hessian:

wk
i =1, if k =arg min

k

Hk
i .β/:

In practice, the Hessians are evaluated at β̂, a preliminary consistent estimator. By choosing
the cut-off point leading to the smallest Hessian, this rule should yield a fixed effects ordered
logit estimator with the smallest inverse of minus the sum of the Hessians, and thus minimal
variance. Other simpler rules for choosing wk

i have been used in the literature, trading efficiency
for computational convenience. In fact, the standard way in which this estimator is implemented
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in applications is by choosing the individual mean of the dependent variable as dichotomizing
cut-off point. Another possibility is to dichotomize at the median.

The key point is that these procedures determine the dichotomizing cut-off point endogen-
ously, since it depends on yi. This is problematic and leads to an inconsistent estimator. To
provide some intuition for the inconsistency, consider the mean cut-off estimator as an example.
In that estimator, it is easily seen that the cut-off is endogenous since dMn

it = 1 if and only if
yit � T −1 Σt yit . Thus, yit itself is part of the cut-off, and the probability Pr.dMn

it = 1/ can be
written as

Pr.dMn
it =1/=Pr

(
yit �

1
T

∑
t

yit

)
=Pr

(
yit �

1
T −1

∑
s �=t

yis

)
:

Thus, the probability Pr.dMn
it = 1/ is equal to the probability that the outcome in t is greater

than the average outcome in the remaining periods. In general, this is a different value for every
period, and the implicit within-individual correlation between yit and the time varying cut-off is
negative. With endogenous cut-offs, the score of these estimators does not converge to 0 at the
true parameter. On-line Web appendix A gives a formal proof of inconsistency. In Section 3, we
provide quantitative information on the magnitude of the bias in some Monte Carlo simulations.

2.3. Consistent and efficient estimators
The estimators that have been discussed so far use only one dichotomization per individual to
estimate β. This implies that they do not use all information contained in the variation of the
dependent variable, and alternative approaches can provide gains in efficiency. A first possibility
is to calculate all Chamberlain estimators separately and then to combine them in a second step
using MD estimation (Das and van Soest, 1999). The second approach is based on the composite
likelihood method (Varin et al., 2011); it estimates β on the basis of the sum of the likelihood
functions of all the different Chamberlain estimators. This method was used for instance by
Mukherjee et al. (2008). The third approach is to combine the moment restrictions that are
implied by the model and to use them in a GMM framework to estimate β.

2.3.1. Minimum distance estimation
Since every Chamberlain estimator β̂

k
is a consistent estimator of β, so is any weighted average

of them. The efficient combination can be obtained by MD estimation. Specifically, let M be
a matrix of K −1 stacked L-dimensional identity matrices, and β̃ the .K −1/L×1 vector con-
taining the K −1 Chamberlain estimators. The MD estimator is given by

β̂
MD =arg min

b

.β̃ −Mb/′ var.β̃/−1.β̃ −Mb/, .11/

where var.β̃/ is the variance–covariance matrix of the stacked Chamberlain estimators (Das
and van Soest, 1999). The solution to equation (11) is

β̂
MD ={M ′var.β̃/−1M}−1M ′var.β̃/−1β̃,

showing that the MD estimator is a matrix weighted average of the Chamberlain estim-
ators. The asymptotic variance (i.e. the limiting variance of

√
n.β̂

MD −β// is

Avar.β̂
MD

/={M ′Avar.β̃/−1M}−1

= [E.Hi.β//′E{si.β/si.β/′}−1 E.Hi.β//]−1,

where si.β/ denotes individual i’s stacked Chamberlain scores evaluated at β, and Hi.β/ the
stacked Hessians.
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2.3.2. Restricted conditional maximum likelihood estimation
Alternatively, the information that is associated with the different cut-offs can be combined
in a single likelihood function, leading to a one-step estimator of β. The sample (quasi-)
log-likelihood function of this restricted CML estimator is

LLBUC.b/=
K∑

k=2
LLk.b/, .12/

where LLk.b/ is defined as in equation (6), and β̂BUC is the estimator that maximizes equation
(12) and thus imposes the restriction that β̂

2 = : : := β̂
K

. Such an estimator has been suggested by
Mukherjee et al. (2008). We refer to it as BUC because that describes the way of implementing
this estimator by using CML estimation: replace every observation in the sample by K−1 copies
of itself (‘blow up’ the sample size), and dichotomize each of the K −1 copies of the individual
at a different cut-off point. The BUC estimates are obtained by CML estimation using the entire
sample. The standard errors need to be clustered at the individual level since observations are
dependent by construction.

It is straightforward to see that this approach leads to a consistent estimator. The score of the
BUC log-likelihood function equals the sum of the scores of the Chamberlain estimators. Since
these estimators are consistent, their scores converge to 0 in probability at the true parameter.
It follows that the probability limit of the score of the restricted CML estimator is 0 as well:

plim
K∑

k=2

1
N

N∑
i=1

sk
i .β/=plim

1
N

∑
i

s2
i .β/+ : : :+plim

1
N

∑
i

sK
i .β/=0 .13/

which, together with the concavity of the objective function, implies that β̂
BUC

converges to β.
Since some individuals contribute to several terms in the log-likelihood this creates depen-

dence between these terms, invalidating the usual estimate of the estimator variance based on
the information matrix equality. Instead, a cluster robust variance estimator which allows for
arbitrary correlation within the various contributions of any individual should be used. The
formula for the variance can be found in the next section, where it is shown that the BUC
estimator can be written as an inefficient GMM estimator. The main difference between MD
and BUC estimation is the weighting: by simply summing over the log-likelihood contributions,
the BUC estimator implies weights of the Chamberlain estimators that are different from the
variance-based weights that are used by the MD estimator.

2.3.3. Generalized method of moments and empirical likelihood
A third approach for achieving gains in efficiency over the simple Chamberlain estimator com-
bines the moment conditions that are implied by the model under the different dichotomizations.
With L explanatory variables, each dichotomization leads to L zero-expected score moment
conditions. This gives .K −1/L restrictions in total. Since only L parameters are estimated, the
system is overidentified. The GMM estimator with weighting matrix W is

β̂
GMM =arg min

b

s.b/′W s.b/, .14/

where

s.b/′ = 1
N

N∑
i=1

.s2′
i .b/, : : : , sK′

i .b//:

The first-order conditions of the GMM estimator with weighting matrix W are given by
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@s.β̂
GMM

/

@β̂
GMM′ W s.β̂

GMM
/=H.β̂

GMM
/′W s.β̂

GMM
/=0, .15/

where H.β̂
GMM

/ denotes the matrix of stacked Hessians of the single Chamberlain estim-
ators evaluated at β̂

GMM
: H.b/′ = .H2.b/, : : : , Hk.b//. The efficient GMM estimator uses the

inverse of the variance of the moment conditions as weighting matrix: WOPT =E{s.β/s.β/′}−1:

The asymptotic variance of the efficient GMM is

Avar.β̂
GMM

/=
[
E

(
@si.β/

@β′

)′
E{si.β/si.β/′}−1 E

(
@si.β/

@β′

)]−1

= [E.Hi.β//′ E{si.β/si.β/′}−1E.Hi.β//]−1: .16/

It equals the asymptotic variance of the MD estimator. The form of the first-order conditions,
equation (15), implies a GMM representation of the BUC estimator: setting the weighting
matrix to a block diagonal matrix with the inverse of the Chamberlain Hessians on the diagonal
yields the first-order conditions of the BUC estimator. Since this matrix, say WBUC, is not
equal to WOPT, the weighting matrix of the efficient GMM estimator, the BUC estimator has
in general a larger variance than the MD and GMM estimators. Using standard GMM results,
the asymptotic variance of the BUC estimator is

Avar.β̂
BUC

/= .H ′
iW

BUCHi/
−1.H ′

iW
BUCSiW

BUCHi/.H
′
iW

BUCHi/
−1

=
{

K∑
k=2

E.Hk
i .β//

}−1 [ K∑
k=2

K∑
l=2

E{sk
i .β/sl

i.β/}
]{

K∑
k=2

E.Hk
i .β//

}−1

, .17/

with Hi = E.Hi.β//, Si = E{si.β/si.β/′} and WBUC denoting the weighting matrix described.
The second equality follows since WBUCHi = M: a matrix of K − 1 stacked L-dimensioned
identity matrices. An estimate of expression (17) can be used to construct optimal weights for a
weighted version of the BUC estimator.

As an alternative to the GMM, the EL estimator works directly with moment conditions as
well. It has an asymptotic distribution that is identical to that of the efficient GMM estimator.
However, EL estimators usually have better small sample properties (see for example Kitamura
(2006)). In our set-up, the EL estimator is the result to the optimization problem

max
p,b

N∑
i=1

log.pi/, subject to
N∑

i=1
pi =1 and

N∑
i=1

si.b/pi =0: .18/

The vector si.b/ is the vector of stacked Chamberlain scores for individual i. pi denotes the
probability of observing individual i’s variable realizations. The interest is only in b, whereas p

is treated as an auxiliary parameter vector.

3. Monte Carlo study

This section compares the bias, precision and overall robustness of the various estimators of
the fixed effects ordered logit model in small samples by using Monte Carlo simulations. First,
although all estimators may suffer from bias in small and moderately sized samples due to
the non-linearity of the objective functions, this bias, if any, should be minor compared with
the bias from inconsistency due to endogenously chosen cut-offs by the FF estimators. Second,
although the MD, GMM and EL are more efficient than the Chamberlain and BUC estimators,
this is an asymptotic result that requires the use of optimal weights. In practice, the weights are
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unknown and need to be estimated from the data. This can be problematic if the sample size
is small and there is a large number of categories, so that the number of individuals who cross
a certain threshold is low. This situation is frequently encountered in applied research. In such
cases the performance of the estimators may be poor, or, even worse, empirical counterparts of
some of the moments may not be defined owing to a lack of observations.

It is therefore not clear, ex ante, whether the efficient estimators dominate the simpler
estimators in finite sample settings. Anticipating our results, we find that the estimator which
suffers the least from such problems is the BUC estimator. It is approximately unbiased and
the loss of efficiency relative to the optimal estimators is very modest in our simulations. These
facts, together with the simplicity of the implementation, make the BUC estimator an attractive
option.

3.1. Experimental design
The data-generating process (DGP) for the latent variable is

yÅ
it =β1x1it +β2x2it +αi + "it , i=1, : : : , N, t =1, : : : , T ,

where we set β1 = β2 = 1. The continuous regressor x1 is normally distributed N.0, 0:5/. The
error "it has a standard logistic distribution. The other regressor, x2, is a binary regressor that
is correlated with αi. To generate correlation, we define two equally sized latent populations
of individuals. In population 1, x2it ∼ Bernoulli.0:5/ and αi ∼ N.1, 0:5/. In contrast, members
of population 2 do not exhibit any variation in x2it and the distribution of their time invariant
heterogeneity has a lower mean: x2it = 0 and αi ∼ N.0, 0:5/. Thus, overall in the DGP αi is
uncorrelated with x1it but correlated with x2it (ρ≈0:4).

The observed ordered response variable y is obtained from the threshold mechanism (2).
Although thresholds could be individual specific, we vary them only between the two popula-
tions. The number of categories K is equal to 5. In the first population, thresholds 2, 3 and 4
are equal to 0. Thus, only outcomes y = 1 and y = 5 are observed. (Whereas standard (cross-
sectional) ordered logit models require τik < τik+1 as a regularity condition for identification of
the thresholds, the CML approach that is discussed here does not estimate thresholds and so
only requires the weaker regularity condition that τik � τik+1 ∀ k and τik < τik+1 for at least one
k.) In the second population, the thresholds are chosen such that y follows a discrete uniform
distribution.

The DGP reflects a situation where the variation in the independent variables (which identifies
the coefficients) differs across segments of the population that also differ in the distribution of
their unobserved heterogeneity and the way that they translate the latent outcome into ordered
responses. In the context of our empirical application, for instance, only a small fraction of
the individuals exhibit variation in their employment status, and one could imagine that such
individuals who differ from the remaining population in terms of observables also do so in terms
of fixed effects and reporting.

In our simulation DGP, β2 will be estimated from population 1 since x2it exhibits only within-
individual variation in this group, whereas β1 is estimated from both populations. Hence, for
inconsistent estimators, biases in the latter should be an average of the type of biases that are
obtained in population 1 and 2, whereas the bias in estimates of β2 should depend mainly on the
distribution of yit in population 1. Since there is more within-individual variance in the outcome
in population 1 the sensitivity of endogenous cut-offs with respect to a particular yit should be
higher here and induce larger biases.

The baseline DGP is a balanced panel of N = 500 individuals observed for T = 3 periods. In
a second step, the DGP is modified by increasing N, T and K.
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3.2. Results
Table 1 contains results for the Monte Carlo simulations, based on 1000 replications of each
DGP. Columns with heading β̂1 show means of estimated coefficients corresponding to x1, and
columns labelled β̂2 show means for those corresponding to x2. The numbers in parentheses are
the standard deviations of the estimates. The first group of four columns provides the results of
the baseline DGP: N =500, T =3 and K =5; the next group the results for a scenario where the
number of individuals is increased to 1000; the following group the results for twice the number
of time periods; and the last four columns show the results with 10 instead of five categories. Each
row of Table 1 refers to a different estimator: the top four rows display results for Chamberlain
estimators with cut-off points 2–5, followed by the three estimators with endogenous cut-offs.
The last four rows contain the results of the four estimators combining the information of
different cut-offs.

The simple Chamberlain estimators perform well in the simulations. They appear not to suffer
from small sample bias and the estimation procedures always converge. However, they have a
higher variance compared with the other proposed estimators. The loss of efficiency, as we
would expect, becomes larger as the number of categories increases.

The estimators with endogenous cut-offs, in contrast, are clearly distorted. In the baseline
scenario, the order of the biases is between 5% and 14%. The margin of error at the 99% level
(±2:57SD=

√
1000) is always smaller than 0.02 and the distortion is therefore substantial. The

bias is larger for the original FF estimator than for the mean or median cut-off estimators. To
confirm the hypothesis that the deviation of the estimator’s mean from the true parameter is
caused by the procedure’s inconsistency and not just a result of the small sample, we doubled
the number of independent observations. The deviation is the same and illustrates therefore that
these estimators are inconsistent.

Expanding the number of time periods, in contrast, reduces the distortion. The reason for
the bias is not the use of individual-specific cut-offs per se, but the dependence of these cut-offs
on yi. Increasing the number of time periods decreases the dependence between cut-offs and
realized error terms, and leads therefore to less biased estimators. In contrast, the size of the bias
is exacerbated by adding categories. This is to be expected since all estimators degenerate to the
same consistent Chamberlain estimator if the number of categories shrinks to 2. For example,
for 10 categories, a standard number in research on job satisfaction and happiness, the mean of
the FF estimator for β2 is 0.80, which is well below the true value of 1.

Regarding the estimators which combine the available information of the Chamberlain esti-
mators, it is noteworthy how well the BUC estimator performs. Although it is asymptotically
less efficient, we find that the actual loss of efficiency of the BUC estimator is small to negligible
in our Monte Carlo simulations. Regarding distortions, neither the BUC nor the EL estimator
seems to suffer from an observable small sample bias. The GMM and the MD estimators in
contrast show signs of distortions. These are most accentuated if there are few observations
and many categories. The bias for βMD

1 , for example, is around 5% in the scenario with 500
individuals, three time periods and 10 categories. The bias of the GMM estimator in this setting
is about 6%. Another problem is that the GMM and EL estimators do not always converge, at
least with our implementation. It is known that this sort of convergence difficulties tends to be
more pervasive with a higher number of explanatory variables. Thus, the BUC estimator can be
a useful alternative for applied work with high dimensional x. (For instance, in 100 replications
of the baseline DGP but with x1 ∼N.0, 0:5/ replaced by five regressors distributed as N.0, 0:1/,
the rate of convergence of our implementation decreased from 99.3% and 99.9% for GMM and
EL reported in the footnotes of Table 1 to 84% and 97% respectively. BUC’s convergence rate
remained at 100%.)
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The discussion so far has focused on bias and precision of the different estimators for β. In
ordered logit models, β-parameters have a straightforward interpretation as marginal effects of
regressors on the log-odds, ln{P.y > k/=P.y � k/}. However, the main interest is often not in
the β-parameters per se but rather in derived statistics, such as ratios of coefficients or average
marginal effects. Ratios are interesting, because they determine the compensating change of
one variable required to offset a change in another, such that response probabilities remain
unchanged. Ratios therefore quantify trade-offs between variables and, if one variable is income
or price, monetary compensation.

Table 2 presents means and standard deviations for the estimated ratio β̂1=β̂2 over the
1000 replications corresponding to the four DGPs in Table 1. The results are in line with those
of Table 1. The means of the ratio for the endogenous cut-off estimators are far off the true
value (which equals 1). The Chamberlain estimators display acceptable results when either N

or T is large, but they show some bias in the baseline DGP and in the last DGP with an in-
creased number of categories (K=10). (One estimator which performs poorly in that DGP is the
Chamberlain estimator with y�2. However, some of the bias is due to outliers: the 1% trimmed
mean is 1.11.) The estimators combining all available information, in contrast, estimate the ratio
closely in all scenarios. In the results of Table 2 the efficiency advantage of MD, BUC, GMM
and EL over Chamberlain and endogenous cut-off estimators is also much more visible than in
Table 1. For instance, in the DGP with K =10 the standard deviation of the ratio is up to 40%
larger for endogenous cut-off estimators than for the consistent and efficient estimators.

The average marginal effect of the lth regressor on the probability of outcome k has the form

AMEk
l = .NT/−1 ∑

i,t
[−{Λik+1.1−Λik+1/−Λik.1−Λik/}βl],

Table 2. Monte Carlo simulation results (1000 replications): mean ratio
β̂1=β̂2†

β̂1/β̂2 for the following DGPs:

Baseline N =1000 T =6 K =10

Chamberlain estimators
y �2 1.08 (0.57) 1.03 (0.22) 1.02 (0.19) 1.27 (6.07)
y �3 1.03 (0.28) 1.02 (0.18) 1.02 (0.16) 1.08 (0.57)
y �4 1.04 (0.27) 1.02 (0.17) 1.02 (0.16) 1.04 (0.31)
y �5 1.05 (0.35) 1.02 (0.22) 1.02 (0.19) 1.03 (0.28)

Estimators with endogenous cut-offs
FF 1.11 (0.29) 1.09 (0.19) 1.06 (0.16) 1.15 (0.33)
Median 1.09 (0.28) 1.08 (0.18) 1.06 (0.16) 1.13 (0.32)
Mean 1.07 (0.27) 1.06 (0.18) 1.04 (0.16) 1.08 (0.27)

Estimators which combine all information
MD 1.01 (0.23) 1.01 (0.15) 1.01 (0.14) 1.00 (0.23)
BUC 1.02 (0.23) 1.01 (0.15) 1.01 (0.14) 1.02 (0.23)
GMM 1.01 (0.23) 1.01 (0.15) 1.01 (0.13) 1.00 (0.23)
EL 1.02 (0.23) 1.01 (0.15) 1.01 (0.13) 1.02 (0.23)

†β1=β2 =1. Columns contain the mean of the ratio of the estimated coefficients
over all replications; the standard deviation of the estimated ratio is in parenthe-
ses. Baseline DGP: N =500, T =3 and K =5. Other DGPs differ from baseline
only as indicated in the column header. See also the footnotes to Table 1.
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Table 3. Monte Carlo simulation results (1000 replications): mean ratio β̂1=β̂2 under error
misspecification†

β̂1=β̂2 for the following error specifications:

"∼N "∼ t(6) "∼LN "∼Po "∼B

Chamberlain estimators
y �2 0.76 (8.21) 1.09 (0.54) 0.76 (0.13) 0.89 (0.28) 0.31 (0.11)
y �3 1.05 (0.31) 1.05 (0.29) 0.88 (0.12) 1.02 (0.28) 0.66 (0.91)
y �4 1.05 (0.31) 1.04 (0.28) 1.03 (0.16) 1.07 (0.33) 0.65 (0.58)
y �5 1.03 (0.38) 1.08 (0.39) 1.41 (0.41) 1.16 (0.64) 0.31 (0.11)

Estimators which combine all information
MD 1.01 (0.25) 1.03 (0.23) 0.89 (0.14) 0.98 (0.24) 0.41 (0.14)
BUC 1.02 (0.25) 1.03 (0.24) 0.98 (0.12) 1.00 (0.24) 0.45 (0.15)

†β1=β2 =1. Columns contain the mean of the ratio of the estimated coefficients over all replica-
tions; the standard deviation of the estimated ratio is in parentheses. Baseline DGP with N =500,
T =3 and K =5 but with error distributions as indicated in the column headers: N, normal; t.6/,
Student’s t; LN, log-normal; Po, Poisson; B, Bernoulli. The mean and variance of the error
distributions are normalized to 0 and π2=3.

where Λik =Λ.τik −x′
itβ −αi/. Because these effects depend on αi, τik and τik+1 they cannot be

estimated consistently. However, the effect can be computed at a specific value of the linear index,
such as that resulting in the sample probabilities. In the baseline DGP, this effect calculated
for the binary regressor on the highest outcome is 24.4 percentage points. Since the effect is
proportional to βl, its relative bias is equal to the relative bias in βl. Using the FF estimate, the
effect is underestimated by 14%.

3.3. Sensitivity to misspecification of the error distribution
The CML estimator is inconsistent if the error distribution is not logistic. Some theoretical
results (Czado and Santner, 1992) and simulation evidence (Cramer, 2007) suggest a certain
robustness of the cross-sectional maximum likelihood logit estimator to error misspecification.
In this subsection we explore the performance of some of the estimators under misspecification.

We focus on the simple Chamberlain CML estimators for a dichotomized y, as well as on
two of the estimators which combine all available information: one efficient estimator—the MD
estimator—and the inefficient BUC. Table 3 contains the results from the baseline DGP but with
"it drawn from different, non-logistic distributions. In binary latent variable models, coefficients
are identified only up to scale, and a normalization is required. We keep the logit normalization
in all of the following DGPs, setting the variance of "it to π2=3 (and its mean to 0). We follow
Cramer (2007) in the selection of the distributions. We report the mean over 1000 replications
of the estimated ratio β1=β2 which is equal to 1 in all DGPs, and its standard deviation in
parentheses.

The first distribution that we consider is the Gaussian distribution (the column labelled
‘"it ∼N’). The choice between specifying a logistic or a normal error distribution is a matter of
convenience. For instance, the sum of the outcome is a sufficient statistic only in the logit but not
in the probit fixed effects model. The results from the simulations show, however, that the simple
CML estimates of the coefficients’ ratio seem to be robust to this error misspecification. The
first Chamberlain estimator (dichotomized at 2) is an exception, exhibiting a large distortion.
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However, this is mainly due to about 0.1% of the replications, where the coefficient estimates
were extraordinarily large. One could argue that these observations should be excluded, which
would lead to results that are comparable with those for the other Chamberlain estimators.
Nevertheless, we report the results including these replications to illustrate the bias reducing
effect of the estimators combining the available information: indeed, both MD and BUC show
no significant distortion and estimate the ratio closely.

The normal is quite similar to the logistic distribution. Thus, as the next step, we consider a
distribution with considerably higher kurtosis than that of the logistic: Student’s t-distribution
with 6 degrees of freedom (the column ‘"it ∼ t.6/’). The bias in the Chamberlain estimators is
now somewhat higher, but again MD’s and BUC’s performance is quite acceptable with biases
of about 3%.

Both the normal distribution and the t-distribution are symmetric. The column ‘" ∼ LN’
reports results from a DGP with a log-normal—and thus skewed—distribution. The bias in
the Chamberlain estimators is now asymmetric, also, going from −24% (for y �2) to 41% (for
y�5). Whereas the MD estimator exhibits a bias of −11%, the BUC estimator remains virtually
unbiased. The following column again uses a skew distribution. Taking the misspecification even
further, the distribution is discrete: the errors in the DGP from the column ‘" ∼ Po’ follow a
Poisson distribution. The pattern of the biases in the Chamberlain estimators is the same as in
the log-normal case. Here again both MD and BUC can estimate the ratio without bias.

The previous evidence shows that the proposed estimators for the fixed effects ordered logit
model seem to be quite robust to light and moderate misspecification of the error distribution.
The final column acts as a caveat and shows that this result cannot be extended to cases of severe
misspecification. In the column ‘"∼B’ errors are drawn from a Bernoulli distribution and are
therefore radically different from logistic errors. The ratios are now far off the true value not
only for the Chamberlain estimators but also for the MD and BUC estimators.

4. Effect of unemployment on life satisfaction

To illustrate the functioning of the various estimators in a real data example, we revisit the
empirical modelling of the determinants of life satisfaction by using household panel data for
Germany, extracted from the German Socio-Economic Panel (Wagner et al., 2007). This ap-
plication provided the initial context for the development of some of the fixed effects ordered
logit estimators that are discussed in this paper (Winkelmann and Winkelmann, 1998; Ferrer-
i-Carbonell and Frijters, 2004). Moreover, it is an area where inconsistent estimators have been
used in the past (e.g. Kassenboehmer and Haisken-DeNew (2012) and Knabe and Rätzel (2011)).

The main purpose of this section is illustrative, comparing the various estimators in a typi-
cal application of fixed effects ordered logit models, rather than contributing to the frontier of
research on the wellbeing cost of unemployment. For instance, by considering the contempo-
raneous effect only, we do not allow for anticipation or adaptation effects. Nor do we consider
the importance of social work norms, aggregate or household unemployment, or peer effects
that have been discussed in the more recent literature.

Our specification is similar to that of the early panel applications. Regressors include indicators
of labour force status, marital status, health and logarithmic household income, all referring
to the time of the interview. Macroeconomic shocks are controlled for by the inclusion of time
effects that may or may not vary by state (‘Bundesland ’). It is impossible, in a fixed effects model,
to identify the linear effect of age and the linear component of a time trend separately. Hence,
we follow Ferrer-i-Carbonell and Frijters (2004) and exclude the variable ‘age’ from our model.

We also consider a slightly extended specification, where we include an indicator for plant
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Table 4. Sample averages by year†

Results for the following years:

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Life satisfaction 7.20 7.16 7.05 6.92 7.06 7.04 7.09 7.09 7.01 7.12 7.08
Age 42.4 43.3 43.1 43.1 43.2 43.6 43.6 43.8 44.0 44.4 44.7
Logarithm of net

household income
10.36 10.52 10.52 10.52 10.53 10.52 10.53 10.56 10.56 10.58 10.59

Years in panel 7.8 7.6 8.7 9.4 10.2 9.8 10.8 11.6 10.9 11.8 12.0
Unemployed 0.050 0.046 0.058 0.064 0.065 0.062 0.049 0.043 0.049 0.050 0.041
Unemployment due to

plant closure
0.044 0.050 0.085 0.082 0.041 0.047 0.030 0.041 0.050 0.051 0.027

Not in labour force 0.137 0.138 0.137 0.131 0.122 0.129 0.121 0.119 0.125 0.128 0.130
Married 0.672 0.678 0.661 0.647 0.640 0.644 0.636 0.630 0.616 0.609 0.610
Good health 0.842 0.841 0.843 0.846 0.85 0.845 0.85 0.851 0.844 0.834 0.826

Number of
observations

6309 6897 6311 6063 5646 5934 5464 5046 5278 4747 4582

†Data source: German Socio-Economic Panel, waves 2001–2011.

closure unemployment and control for panel learning effects. Repeated participation in the
survey appears to be associated with lower reported life satisfaction, ceteris paribus (Kassen-
boehmer and Haisken-DeNew, 2012). One explanation is that increasing familiarity with the
interviewer changes the reporting behaviour by reducing social desirability bias. In a fixed effects
model, the panel learning effect is identified from individuals with gaps in their participation his-
tory. Moreover, people who lost their job during the 12 months before the interview were asked
for the reasons for termination of their employment, one of them being ‘plant closure’. Kassen-
boehmer and Haisken-DeNew (2009) interpreted plant closure as an exogenous shock, adding
support to the view that corresponding estimates identify the causal effect of plant closure un-
employment on life satisfaction (see also Schmitz (2011)). Our discussion of results will centre
on the estimated coefficient of the unemployment indicator variable, as well as on the income
coefficient, the ratio of the two providing an estimate of the ‘shadow cost’ of unemployment.

4.1. Data
The sample that was used for estimation has been extracted from the 2001–2011 waves of the
German Socio-Economic Panel. We start in 2001, since consecutive information on all variables
of interest is available only from that year onwards. The analysis focuses on men in the West
German subsample, aged between 21 and 64 years. The sampling results in an unbalanced panel
with a total of 62277 observations on 11563 individuals.

The outcome variable is satisfaction with life measured by the question ‘How satisfied are
you at present with your life as a whole?’. The answer has 11 ordered categories ranging from
0, ‘completely dissatisfied’, to 10, ‘completely satisfied’. Sample averages for the main variables
employed in the analysis are given in Table 4.

Average life satisfaction is slightly above 7 in most of the 11 years. Both average age and
average duration in the panel increase over time, from 42.4 to 44.7 and from 7.8 to 12.0 years
respectively. The ‘unemployment rate’, defined as the fraction of unemployed in the total working
age population, peaks at 6.4% in 2004 (corresponding to 7.4% of the labour force). Plant closure
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unemployment is a relatively rare event during the observation period: only between 3% and
8% of all unemployed people state that they lost their previous job because of plant closure. As
a consequence, we expect that it will be difficult with these data to estimate the effect of plant
closure unemployment precisely. Income is calculated as the logarithm of household income
after taxes and transfers. ‘Good health’ combines two questions: the value is 1 if the respondent
indicates having no chronic health condition, in addition to having spent no days in a hospital
during the preceeding year, and 0 otherwise. The proportion of people in good health remains
relatively stable over time, with a total average of about 84% of the responses. Table 4 does not
contain any variables that are time invariant, such as completed education or personality traits.
These factors would be absorbed into the fixed effect in our models and are thus irrelevant for
the analysis.

4.2. Fixed effects ordered logit results
Table 5 presents estimation results for a benchmark ordered logit model with individual and year
fixed effects by using six different estimators: a fixed cut-off estimator (cut-off at 6), the BUC
estimator, the MD estimator and three estimators with individual-specific endogenous cut-off:
the mean, median and minimum Hessian (FF). There are 62277 observations in total, distributed
over 11563 distinct individuals. Among them, 3357 individuals have no time variation in life sat-
isfaction, a majority (2521 of them) because they are present in the sample for a single wave
only. Regardless of estimation method, such observations cannot contribute to estimation in a
fixed effects ordered logit model. Of the remaining 8206 people the Chamberlain estimator with
dichotomization at value 6 shown in column (1) of Table 5 uses only 3418 individuals with 25981
person-year observations. This dichotomization entails therefore a large loss of information.

By contrast, the BUC and MD estimators that are shown in columns (2) and (3) of Table 5 use
more than twice as many observations, 57274 entries for 8206 individuals. The resulting gains in

Table 5. Fixed effects ordered logit estimates of life satisfaction†

(1), y �6 (2), BUC (3), MD (4), Mean (5), Median (6), FF

Unemployed −1.096 −1.035 −1.005 −0.898 −0.854 −0.941
(0.074) (0.059) (0.056) (0.059) (0.058) (0.065)

Out of labour force −0.471 −0.330 −0.255 −0.278 −0.240 −0.254
(0.075) (0.054) (0.047) (0.048) (0.048) (0.056)

Married 0.333 0.302 0.302 0.359 0.342 0.405
(0.090) (0.064) (0.060) (0.059) (0.059) (0.065)

Good health 0.318 0.318 0.298 0.264 0.241 0.286
(0.057) (0.040) (0.036) (0.037) (0.037) (0.042)

Age squared 0.0007 0.0008 0.0008 0.0007 0.0007 0.0006
(0.0003) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

log(net household income) 0.270 0.278 0.257 0.214 0.216 0.203
(0.054) (0.038) (0.038) (0.035) (0.035) (0.037)

Individual fixed effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes
Pseudo-log-likelihood −9486.6 −61219.0 −25725.4 −26047.8 −19401.4
Observations 25981 57274 57274 57274 57274 57274
Individuals 3418 8206 8206 8206 8206 8206

†Dependent variable, life satisfaction; data source, German Socio-Economic Panel, waves 2001–2011; cluster
robust standard errors are in parentheses; ‘Observations’ denotes the number of person-years in the estimation
sample; ‘Individuals’ denotes the number of unique people in the estimation sample.
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efficiency are substantial. For example, the standard error of the unemployment effect drops by
20% from 0.074 to 0.059 relatively to that of the Chamberlain estimator. MD estimation reduces
the standard errors further, to 0.056 in the case of the unemployment effect. As to substantive
results, the effect of unemployment is found to be large and statistically significant, confirming
the results of the previous literature. Since the regressions control for log(household income),
the measured unemployment effect is purely non-pecuniary, or psychological. To obtain the
total reduction in life satisfaction due to unemployment, we would need to add the additional
cost of reduced household income if benefits replace income less than fully.

The most striking feature of Table 5 as a whole is that columns (1)–(3)—which are based
on consistent estimators—give broadly similar results, whereas they differ from the three last
columns based on inconsistent estimators. The unemployment coefficient lies between −1 and
−1.1 when using Chamberlain, MD or BUC estimators but it ranges from −0.85 to −0.94
when using FF, mean or median estimators. Attenuation bias is observed for the effects of
non-participation, health and household income as well, though not for marital status. Indeed,
a tendency for attenuation bias was already present in the life satisfaction models of Ferrer-
i-Carbonell and Frijters (2004), when they compared their estimator with the MD approach,
though they did not interpret it that way.

4.3. Marginal effects and shadow values
In the ordered logit model, coefficients βj are equal to the relative change in the continuation
odds Pr.y > k/= Pr.y � k/ that are associated with a small change in xj. The effects of x on
other quantities, such as Pr.y > k/ or Pr.y = k/, depend on the fixed effects αi and are thus not
determined. Of course, since probabilities are a monotone function of odds, one can compute
marginal probability effects for given odds (e.g. at the sample mean).

In practice, life satisfaction equations are frequently employed to estimate shadow values of
non-traded goods or ‘bads’ (including airport noise, pollution, health and unemployment) as an
input into cost–benefit analyses. For example, minus the ratio of the unemployment coefficient
and the coefficient of logarithmic income indicates the relative change in income that is required
to keep overall life satisfaction of an unemployed person equal to that of an otherwise similar
employed person.

On the basis of the estimates in Table 5, we find that the shadow value of unemployment
varies between a minimum of 3.72 (BUC) and a maximum of 4.63 (FF). Estimation of a linear
fixed effects panel data model would yield a shadow value of 4.25. Even larger differences are
found for other variables. For example, the implied shadow value of being married is equal to a
1.1-fold increase in income on the basis of the BUC estimator, compared with a 2.0-fold increase
in income based on the FF estimator. The application thus corroborates the simulation evidence
on trade-off distortions, with the corresponding adverse consequences of using inconsistent
estimators in policy analysis. Note that all the shadow values are very high, perhaps unrealis-
tically so, which is a common result in the literature resulting from the relative insensitivity of
reported life satisfaction to income changes.

4.4. Plant closure unemployment
Does it matter how the unemployment spell was initiated? To estimate the effect of plant closure
unemployment, we include an interaction term Unemployed × Plant Closure, in addition to
the main effect Unemployed. This interaction term is 1 if the respondent lost his or her job
during the previous 12-month period due to plant closure and is unemployed at the time of the
interview, and is 0 otherwise. People may become unemployed disproportionately in periods and
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Table 6. Plant closure, unemployment and life satisfaction†

(1) (2) (3) (4)

Unemployed −1.039 −1.046 −1.023 −1.032
(0.059) (0.059) (0.061) (0.060)

Unemployed × Plant Closure −0.222 −0.186
(0.192) (0.192)

Out of labour force −0.333 −0.336 −0.330 −0.334
(0.054) (0.054) (0.054) (0.054)

Married 0.302 0.300 0.302 0.299
(0.064) (0.064) (0.064) (0.064)

Good health 0.321 0.324 0.321 0.324
(0.040) (0.040) (0.040) (0.040)

Age squared 0.0006 0.0006 0.0006 0.0006
(0.0002) (0.0002) (0.0002) (0.0002)

log(household income) 0.275 0.278 0.277 0.279
(0.038) (0.038) (0.038) (0.038)

State effects, year effects Yes No Yes No
State × year effects No Yes No Yes
Pseudo-log-likelihood −61130.8 −60950.4 −61128.3 −60948.7

†Dependent variable, life satisfaction; all models are estimated with the BUC estim-
ator; 57274 observations; all models include individual-specific fixed effects and a
second-order polynomial in panel duration. Cluster robust standard errors are given
in parentheses. Data source: the German Socio-Economic Panel, 2001–2011.

places in which the economy does not do well. If people are less satisfied in such economically
depressed times for reasons other than own unemployment, the analysis confounds those effects.
We therefore include in an extended specification a full set of dummy variables for all state–year
combinations.

All models are estimated by using the BUC estimator. Columns (1) and (2) of Table 6 include
only the Unemployed main effect, whereas columns (3) and (4) show the results with the plant
closure–unemployment interaction. Columns (1) and (2) largely corroborate the findings of the
previous subsection, showing that the unemployment finding is robust to the inclusion of state
and time effects, as well as state-specific trends, and thus unrelated to macrofactors that are
captured by these variables.

The main effect in columns (3) and (4) now measures the effect for those entering unemploy-
ment for reasons that are unrelated to plant closure (such as resulting from individual dismissal
or employee-initiated quitting). The point estimate is virtually unchanged. The plant closure
interaction is negative; it adds an additional effect of about a fifth, for a total effect of about
−1.22. Thus, the detrimental effect of unemployment on life satisfaction seems to be especially
large for arguably exogenous unemployment shocks. However, the standard error of the inter-
action terms is large, and the hypothesis of no extra effect cannot be rejected at conventional
levels of significance. As pointed out before, there are just not that many unemployment spells
due to plant closure in the data, which is a limitation of this approach.

5. Conclusions

The ordered logit model has several desirable features that make it the first choice in regression
analyses of discrete, ordinally measured variables, as they arise in the elicitation of life and
job satisfaction or self-assessed health. It has a parsimonious yet flexible parameterization that
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exploits the ordering information while allowing inferences to be made on the entire distribution
of outcomes. However, applications of the ordered logit model to panel data with fixed effects
have been hampered so far by the lack of a unified discussion of various possible estimators and
their respective advantages and shortcomings.

We show in this paper that two of the existing approaches that have been used in the prior
literature cannot be recommended. The first is a simple dichotomization of the ordered response
into a binary variable. This approach is inefficient and misses individuals in the sample who do
not cross the dichotomizing cut-off over time. The second approach is endogenously choosing
individual-specific cut-off values. This approach is inconsistent. The bias can be substantial,
as shown both in Monte Carlo simulations and in the illustrative application to the effect of
unemployment on life satisfaction.

However, we derive the consistent and asymptotically efficient GMM and EL estimators
that use all available information and have the same asymptotic covariance matrix as an MD
estimator. We also study a modified estimator that, although not efficient, may be more robust
in finite samples. This estimator, which we call the BUC estimator, might be especially attractive
to practitioners, as it is simple to implement and its maximization process is stable.

Another computationally simple estimator that we did not discuss in this paper is the ordinary
least squares linear fixed effects estimator. If the underlying model is generated by mechanisms
akin to those discussed in this paper, ordinary least squares can yield severely biased estimates.
The reason is that the ordinary least squares estimand is based on the covariance between the
observed ordered variable and the regressors, whereas the true coefficients are defined by the
covariance between the unobserved latent variable and the regressors. Depending on the distri-
bution of the thresholds, the two can be quite different. Thus, unless a cardinal interpretation
of the ordered data is warranted, ordinary least squares cannot be recommended either.
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