
Making regression tables from stored estimates

Ben Jann
ETH Zurich, Switzerland

Abstract. The organization and archiving of the statistical results and the pro-
cessing of a subset of those results for publication are important and often un-
derestimated issues in conducting statistical analyses. Because the automation of
these tasks is often poor, the processing of results produced by statistical pack-
ages is quite laborious, as well as vulnerable to error. I will therefore present
a new package that facilitates and automates some of these tasks called estout.
This new command can be used to produce regression tables for use with spread-
sheets, LATEX, HTML, or word processors. For example, the results for multiple
models can be organized in spreadsheets and thus archived in an orderly manner.
Alternatively, the results can be directly saved as a publication-ready table for
inclusion in, for example, a LATEX document. estout is implemented as a wrapper
for estimates table, but has many additional features such as support for mfx.
However, despite its flexibility, estout is—I believe—still very straightforward and
easy to use. Furthermore, estout can be customized via so-called defaults files. A
tool to make available supplementary statistics called estadd is also provided.

Keywords: st0001, estout, estoutdef, estadd, estimates, regression table, latex,
html

1 Introduction

Statistical packages are usually very good at estimating all kinds of regression mod-
els, but they are rather poor at keeping the results for those models organized and/or
processing them for publication. This is a real problem because gathering the rele-
vant figures by hand from the large amount of statistical output usually produced and
arranging the results in clear and presentable tables can be very inefficient and error-
prone processes. Furthermore, results must often be processed repeatedly, for example,
because operationalizations are modified or mistakes are detected. In order to reduce
transcription errors and avoid having to repeat the laborious tasks by hand, it makes
sense to automate the processing of results as much as possible.

Fortunately, Stata provides the basis for such an automation. One of the great
features in Stata is that, after an estimation command has been carried out, all the
relevant results are not only displayed onscreen but returned in places where they can
be accessed by the user. This storage of results provides the user with the opportunity
to further process the results in a more or less automated manner. Furthermore, Stata 8
saw the introduction of the estimates command (see [R] estimates), which facilitates
the handling of the estimation results for multiple models. More specifically, results from
up to 20 models can be stored at a time. Stata also provides a utility for compiling a
table of the coefficients for all stored models called estimates table. Although the
estimates table command is rather limited and cannot be used to translate the table

2 Making regression tables

to spreadsheet formats or LATEX code, it does a good job at assembling a raw matrix
of models and parameters that can be used as a starting point for the creation of a
complex and well formatted regression table.

In the remainder of this paper I will present the new estout package, a program
that makes use of the possibilities provided by Stata and produces regression tables
in what I believe is a very flexible and functional way. Note that there also are other
user programs available to produce tables from regression results. John Luke Gallup’s
outreg is probably the most widely used package of this kind (Gallup 1998, 1999, 2000).
Among the other packages are outtex by Antoine Terracol, est2tex by Marc Muendler,
and mktab by Nicholas Winter. Also see Newson (2003) for a very appealing approach.
However, estout represents a good compromise between functionality and usability.

2 Description and basic examples

estout assembles a table of coefficients, “significance stars”, summary statistics, stan-
dard errors, t or z statistics, p-values, confidence intervals, and other statistics calculated
for up to twenty models previously fitted and stored by estimates store. It then writes
the table to the Stata log and/or to a specified text file.

The full syntax of estout is rather complex and is therefore to be found in the
Appendix in Section 4.1 (also see estout’s online help). However, consider the following
basic syntax, which includes only the most important options:

estout
[
namelist

] [
using filename

] [
, cells(array) stats(scalarlist)

style(style) options
]

where namelist is a list of the names of stored estimates (the name list can be entered
as * to refer to all stored estimates). The cells() and stats() options determine the
primary contents of the table. The style() option determines the basic formatting of
the table.

Basic usage

The general procedure for using estout is to first store several models using the estimates
store command and then apply estout to save and/or display a table of the estimates.
By default, estout produces a plain, tab-separated table of the coefficients of the models
indicated by the command:

. sysuse auto
(1978 Automobile Data)

. replace price = price / 1000
price was int now float
(74 real changes made)

. replace weight = weight / 1000
weight was int now float
(74 real changes made)

Ben Jann 3

. regress price weight mpg

(output omitted)

. estimates store m1, title(Model 1)

. generate forXmpg=foreign*mpg

. regress price weight mpg forXmpg foreign

(output omitted)

. estimates store m2, title(Model 2)

. estout * using example.txt

m1 m2
b b

weight 1.746559 4.613589
mpg -.0495122 .2631875
forXmpg -.3072165
foreign 11.24033
_cons 1.946068 -14.44958

The table produced by the estout command looks messy in the Stata results window or
the Stata log because the columns are tab-separated (note that tab characters are not
preserved in the results window or the log). However, the stored example.txt would
look tidy if it were opened, for example, in a spreadsheet program.

Choosing a style

To align the columns, fixed widths can be specified for the columns and tab characters
can be removed. This is most easily done via the style() option, which provides a
style called fixed:

. estout *, style(fixed)

m1 m2
b b

weight 1.746559 4.613589
mpg -.0495122 .2631875
forXmpg -.3072165
foreign 11.24033
_cons 1.946068 -14.44958

Other predefined styles are tab (the default), tex, and html, but it is also possible to
define one’s own styles (see Appendix 4.3). The tex style, for example, modifies the
output table for use with LATEX’s tabular environment:

. estout *, style(tex) varlabels(_cons _cons)

& m1& m2\\
& b& b\\

weight & 1.746559& 4.613589\\
mpg & -.0495122& .2631875\\
forXmpg & & -.3072165\\
foreign & & 11.24033\\
_cons & 1.946068& -14.44958\\

4 Making regression tables

Note that cons has been replaced by its LATEX equivalent in the example above using
the varlabels() option (since the underscore character produces an error in LATEX
unless it is preceded by a backslash). For more information on the varlabels() option,
consult estout’s online help.

The cells option

Use the cells() option to specify the parameter statistics to be tabulated and how
they are to be arranged. The parameter statistics available are b (coefficients; the
default), se (standard errors), t (t/z statistics), p (p-values), ci (confidence intervals;
to display the lower and upper bounds in separate cells use ci l and ci u), as well as
any additional parameter statistics included in the e()-returns for the models (also see
Section 3.7). For example, cells(b se) results in the reporting of raw coefficients and
standard errors:

. estout *, cells(b se) style(fixed)

m1 m2
b/se b/se

weight 1.746559 4.613589
.6413538 .7254961

mpg -.0495122 .2631875
.086156 .1107961

forXmpg -.3072165
.1085307

foreign 11.24033
2.751681

_cons 1.946068 -14.44958
3.59705 4.42572

Multiple statistics are placed in separate rows beneath one another by default as in
the example above. However, elements that are listed in quotes are placed beside one
another. For example, specifying cells("b se t p") produces the following table:

. estout m2, cells("b se t p") style(fixed)

m2
b se t p

weight 4.613589 .7254961 6.359219 1.89e-08
mpg .2631875 .1107961 2.375421 .0203122
forXmpg -.3072165 .1085307 -2.830687 .0060799
foreign 11.24033 2.751681 4.084896 .0001171
_cons -14.44958 4.42572 -3.26491 .0017061

The two approaches can be combined. For example, cells("b p" se) would pro-
duce a table with raw coefficients and standard errors beneath one another in the first
column and p-values in the top row of the second column for each model.

Note that for each statistic named in the cells() option a set of suboptions may
be specified in parentheses. For example, in social sciences it is common to report
standard errors or t statistics in parentheses beneath the coefficients and to indicate the
significance of individual coefficients with stars. Furthermore, the results are rounded.

Ben Jann 5

Just such a table can be created using the following procedure:

. estout *, cells(b(star fmt(%9.3f)) se(par fmt(%9.2f))) style(fixed)

m1 m2
b/se b/se

weight 1.747** 4.614***
(0.64) (0.73)

mpg -0.050 0.263*
(0.09) (0.11)

forXmpg -0.307**
(0.11)

foreign 11.240***
(2.75)

_cons 1.946 -14.450**
(3.60) (4.43)

The estout default is to display * for p < .05, ** for p < .01, and *** for p < .001.
However, note that the significance thresholds and symbols are fully customizable (see
the starlevels option in Appendix 4.1).

The stats option

Finally, use the stats() option to specify scalar statistics to be displayed in the last
rows of each model’s table. The available scalar statistics are aic (Akaike’s information
criterion), bic (Schwarz’s information criterion), rank (the rank of e(V), i.e. the number
of free parameters in model), p (the p-value of the model), as well as any scalar contained
in the e()-returns for the models (also see Section 3.7). For example, specify stats(r2
bic N) to add the R-squared, BIC, and the number of cases to the bottom of the table:

. estout *, stats(r2 bic N) style(fixed)

m1 m2
b b

weight 1.746559 4.613589
mpg -.0495122 .2631875
forXmpg -.3072165
foreign 11.24033
_cons 1.946068 -14.44958
r2 .2933891 .5516277
bic 356.2918 331.2406
N 74 74

3 Advanced applications

The estout package has many features and it is beyond the scope of this text to provide
examples for all of these options. The following presentation is therefore restricted to a
few selected examples illustrating the spectrum of estout’s capabilities and introducing
some of its less obvious applications.

6 Making regression tables

Table 1: The auto data

Model 1 Model 2
Coef. p-value Coef. p-value

Weight (lbs.) 1.747 .008 4.614 .000
Mileage (mpg) –.050 .567 .263 .020
Foreign*Mileage –.307 .006
Foreign car type 11.240 .000
Constant 1.946 .590 –14.450 .002
Adj. R2 .273 .526
No. of cases 74 74
Source: auto.dta

3.1 Using labels

The labels option will cause estout to use variable labels and model labels, if avail-
able. Furthermore, there are options for specifying custom labels for the different table
elements, displaying a legend explaining the significance symbols and thresholds, and
inserting lines of text at various places in the table. The following example is intended
to provide a first impression of these possibilities:

. label variable foreign "Foreign car type"

. label variable forXmpg "Foreign*Mileage"

. estout m1 m2, cells("b(star label(Coef.)) se(label(Std. err.))")
> stats(r2 N, labels(R-squared "N. of cases")) label legend
> varlabels(_cons Constant) posthead("") prefoot("") postfoot("")
> varwidth(16) style(fixed)

Model 1 Model 2
Coef. Std. err. Coef. Std. err.

Weight (lbs.) 1.746559** .6413538 4.613589*** .7254961
Mileage (mpg) -.0495122 .086156 .2631875* .1107961
Foreign*Mileage -.3072165** .1085307
Foreign car type 11.24033*** 2.751681
Constant 1.946068 3.59705 -14.44958** 4.42572

R-squared .2933891 .5516277
N. of cases 74 74

* p<0.05, ** p<0.01, *** p<0.001

3.2 LATEX tables

The highest degree of automation can probably be attained by using estout in combi-
nation with LATEX. Table 1 of this document was produced by inserting the line

\input{auto.tex}

in the LATEX document for this article after having run the following command:

Ben Jann 7

. estout m1 m2 using auto.tex,
> cells("b(label(Coef.) fmt(%9.3f)) p(label(\$p\$-value))")
> stats(r2_a N, fmt(%9.3f %9.0f) labels("Adj. \$R^2\$" "No. of cases"))
> label msign(--) nolz varwidth(16) modelwidth(13) style(tex)
> title(The auto data\label{auto}) varlabels(_cons Constant)
> mlabels(, span prefix(\multicolumn{@span}{c}{) suffix(}))
> prehead("\begin{table}\caption{@title}" "\begin{center}"
> "\begin{tabular}{l*{@M}{rr}}" "\hline") posthead(\hline)
> prefoot(\hline) postfoot("\hline" "\small\textit{Source:} auto.dta"
> "\end{tabular}" "\end{center}" "\end{table}")

\begin{table}\caption{The auto data\label{auto}}
\begin{center}
\begin{tabular}{l*{2}{rr}}
\hline

&\multicolumn{2}{c}{Model 1}&\multicolumn{2}{c}{Model 2}\\
& Coef.& p-value& Coef.& p-value\\

\hline
Weight (lbs.) & 1.747& .008& 4.614& .000\\
Mileage (mpg) & --.050& .567& .263& .020\\
Foreign*Mileage & & & --.307& .006\\
Foreign car type& & & 11.240& .000\\
Constant & 1.946& .590& --14.450& .002\\
\hline
Adj. R^2 & .273& & .526& \\
No. of cases & 74& & 74& \\
\hline
\small\textit{Source:} auto.dta
\end{tabular}
\end{center}
\end{table}

Note that most of the options in the above command could also have been provided
via a defaults files (see Appendix 4.3). Working with defaults files can be very efficient
if you want to produce a large number of similar tables.

3.3 Selective information

estout has a keep() and a drop() option to select the parameters (or equations) to
be tabulated (an example can be found in Section 3.6), as does estimates table (see
[R] estimates). However, a useful additional feature of estout is that the information
displayed can be varied by regressors. Sometimes certain statistics are of interest only
for some parameters and not for others. Those statistics can therefore be suppressed for
individual parameters, using the keep() or the drop() suboption within the cells()
option to save space:

. estout *, cells(b(star) t(par keep(mpg))) style(fixed)

m1 m2
b/t b/t

weight 1.746559** 4.613589***
mpg -.0495122 .2631875*

(-.5746806) (2.375421)
forXmpg -.3072165**

8 Making regression tables

foreign 11.24033***
_cons 1.946068 -14.44958**

Furthermore, the parameter statistics reported for the various models can be specified
using the pattern() suboption within the cells() option (for example, it is possible
to print the t statistics for, say, the second model only; an example can be found in
Section 3.6).

3.4 Summary statistics only

estout can also be used to produce a table displaying only summary statistics:

. estout *, cells(none) stats(r2_a bic N, star) style(fixed)

m1 m2
r2_a .2734846*** .5256351***
bic 356.2918 331.2406
N 74 74

Note that in the example the models’ overall significance is denoted by stars (both
models are significant at the 0.001 level).

3.5 Multiple-equation models

The default in estout is to arrange the different equations of multiple-equation models
in vertical order. However, for models like mlogit or sureg it is sometimes convenient
to arrange the equations horizontally, which can be achieved through the use of the
unstack option:

. sureg (price foreign weight length) (mpg displ = foreign weight)

(output omitted)

. estimates store m4

. estout m4, cells(b t(par)) unstack stats(r2 chi2 p) style(fixed)

m4
price mpg displacement

b/t b/t b/t
foreign 3.57526 -1.650029 -25.6127

(5.749891) (-1.565555) (-2.047999)
weight 5.691462 -6.587886 96.75485

(6.182983) (-10.55641) (13.06594)
length -.0882711

(-2.809689)
_cons 4.506212 41.6797 -87.23547

(1.255897) (19.64914) (-3.46585)
r2 .548808 .6627029 .8115213
chi2 89.73586 145.3912 318.6174
p 2.50e-19 2.68e-32 6.50e-70

Ben Jann 9

In the case of the multiple-equation models reg3, sureg, and mvreg, summary statistics
for all of the model’s equations will be printed in separate columns in the same row.
For all other models, the summary statistics will be placed in the fist column.

3.6 Marginal effects

estout supports Stata’s mfx command for calculating marginal effects or elasticities
(see [R] mfx). In order to report the mfx results in estout, use the margin option.
However, it is important that the model was saved after the application of mfx, as is
illustrated by the following example. Note that the last column of the table in the
example below displays the points around which the marginal effects were estimated
(mfx returns these values in e(Xmfx X)).

. generate record = 0

. replace record = 1 if rep > 3
(34 real changes made)

. logit foreign mpg record

(output omitted)

. estimates store raw

. mfx

(output omitted)

. estimates store mfx

. estout raw mfx, cells("b Xmfx_X(pattern(0 1))" se(par)) margin legend
> style(fixed)

raw mfx
b/se b/se Xmfx_X

mpg .1079219 .0184528 21.2973
(.0565077) (.0101674)

record (d) 2.435068 .4271707 .4594595
(.7128444) (.1043178)

_cons -4.689347
(1.326547)

(d) marginals for discrete change of dummy variable from 0 to 1

With single-equation models, the incorporation of mfx’s results in the table is straight-
forward. However, matters become more complicated for multiple-equation models.
Marginal effects have nothing to do with the equations per se and it is therefore not
clear where to report the mfx results if some variables appear in several different equa-
tions. The default in estout is to print the mfx coefficients in each row that relates to
the variable in question. This default can be changed with the meqs() option, which
specifies that the mfx results be printed only in select equations. For example, proceed
as follows to report the marginal effects for the probability of only the main outcome
in heckprob:

. set seed 6630

. generate u = uniform() > 0.5

. heckprob u headroom, select(foreign = turn headroom) nolog

(output omitted)

10 Making regression tables

. estimates store raw

. mfx

(output omitted)

. estimates store mfx

. estout raw mfx, cells(b se(par)) margin meqs(u) keep(u: foreign:)
> style(fixed)

raw mfx
b/se b/se

u
headroom -1.003445 -.2843565

(.6077779) (.2326952)
_cons 2.176479

(1.923797)
foreign
turn -.2954961

(.0675027)
headroom -.1261772

(.2919013)
_cons 11.05306

(2.479492)

Taking the additional step of inserting the marginal effects for the selection proba-
bility in the example above is rather involved because the marginal effects for the two
functions must be saved in different models. The solution is to print only the main
equation in a first estout call and then append the rest of the table in a second call:

. mfx, predict(psel)

(output omitted)

. estimates store mfx2

. tempfile foo

. estout raw mfx using "‘foo’", cells(b se(par)) margin keep(u:)
> style(fixed) notype

. estout raw mfx2 using "‘foo’", cells(b se(par)) margin
> keep(foreign:) mlabels(, none) collabels(, none)
> style(fixed) notype append

. type "‘foo’"
raw mfx

b/se b/se
u
headroom -1.003445 -.2843565

(.6077779) (.2326952)
_cons 2.176479

(1.923797)
foreign
turn -.2954961 -.068597

(.0675027) (.0158482)
headroom -.1261772 -.029291

(.2919013) (.0665186)
_cons 11.05306

(2.479492)

Ben Jann 11

3.7 Adding supplementary statistics

Results that are included in the e()-returns for the models can be tabulated by estout.
Thus, one approach for, for example, reporting certain transformations of the coefficients
is to add a matrix of the transformed results to the e()-returns and then tabulate the
results using estout. The estadd command, which is part of the estout package, is
designed to support this approach. It may, for example, be used to add standardized
coefficients or the means and standard deviations of the regressors to the e()-returns
for the stored models. However, estadd’s basic capabilities can be extended by writing
subroutines to allow for additional statistics.

The basic syntax of estadd is

estadd
[

namelist
]
, stats(statslist)

[
prefix(string)

]
where namelist is again a list of stored estimates (if namelist is empty, estadd will be
applied to the current estimates). Use stats() to specify the statistics to be added to
the e()-returns of the indicated models. For more details, see estadd’s online help.

Table of descriptives

estadd is equipped with a few predefined statistics such as beta (standardized coef-
ficients), mean (means of regressors), and sd (standard deviations of regressors). The
latter can be used, for example, to produce a table of descriptives for the variables in
the models in our examples:

. quietly generate x = uniform()

. quietly regress x price weight mpg foreign

. estadd, stats(mean sd(nobinary))

. estimates store m3

. estout m3, cells("mean sd") stats(N) mlabels(,none) drop(_cons) style(fixed)

mean sd
price 6.165257 2.949496
weight 3.019459 .7771936
mpg 21.2973 5.785503
foreign .2972973
N 74

Adding user-defined statistics

Writing new estadd subroutines to add user-defined statistics is not overly compli-
cated, as we will illustrate below. In general, a new subroutine should be called
estadd mystat . mystat will be available to the stats() option of the estadd com-
mand after the program code has been executed or the subroutine file has been saved
as estadd mystat.ado in either the current directory or somewhere else in the ado
path ([P] sysdir). The subroutine will be called once for each model with the model’s

12 Making regression tables

estimates restored. The e()-returns for the model in question may be therefore used to
calculate new statistics.

Within a subroutine, use the ereturn command ([P] ereturn) to append new statis-
tics to the existing e()-returns. New summary statistics should be returned as scalars
using the ereturn scalar command, whereas new parameter statistics (e.g. transfor-
mations of the regression coefficients) should be returned as matrices (row vectors, to
be precise) using the ereturn matrix command. Note that the columns of the added
matrices should be named according to the row names of the coefficients matrix e(b)
in order to ensure estout’s ability to tabulate the new parameter statistics. Use the
examples below or the estadd beta, estadd mean and estadd sd subroutines, which
are supplied within the file estadd.ado of the estout package, as a starting point for
programming new routines.

To report the Cox and Snell pseudo R-squared, for example, define the estadd-
subroutine

program _estadd_coxsnell, eclass
syntax [, prefix(name) *]
local coxsnell = 1 - exp(e(ll_0)-e(ll))^(2/e(N))
ereturn scalar ‘prefix’coxsnell = ‘coxsnell’

end

and then type1

. logit foreign price weight

(output omitted)

. estimates store m5

. logit foreign price weight mpg

(output omitted)

. estimates store m6

. estadd m5 m6, stats(coxsnell)

. estout m5 m6, stats(coxsnell) style(fixed)

m5 m6
b b

price .9295969 .9263907
weight -5.878539 -6.849737
mpg -.1210918
_cons 9.000472 14.42237
coxsnell .518701 .5291797

New parameter statistics can be added in a similar manner. For example, the fol-
lowing lines of code comprise a subroutine to insert the standardized factor change
coefficients, or exp(βjSj), where Sj is the standard deviation of regressor j, that are
sometimes reported for logistic regression (see Long 1997):

program _estadd_ebsd, eclass

1Also see the eret2 package (available from the SSC Archive). The eret2 command provides the
possibility of adding statistics to the e()-returns of a model without having to program subroutines.
However, eret2 can be applied only to the currently active estimates.

Ben Jann 13

syntax [, prefix(name) *]
if "‘e(cmd)’" != "logit" | "‘e(wexp)’" != "" exit
tempname results
matrix ‘results’ = e(b)
local vars: colnames ‘results’
local j 0
foreach var of local vars {

local ++j
capture confirm variable ‘var’
if _rc matrix ‘results’[1,‘j’] = .z
else {

quietly summarize ‘var’ if e(sample)
matrix ‘results’[1,‘j’] = exp(‘results’[1,‘j’] * r(sd))

}
}
ereturn matrix ‘prefix’ebsd = ‘results’

end

If the program is saved in the ado path as estadd ebsd.ado, it can, for example, be
called as follows:

. estadd m5, stats(ebsd sd)

. estout m5, eform drop(_cons)
> cells("b(label(e^b)) ebsd(label(e^(b*sdx))) sd(label(sdx))") style(fixed)

m5
e^b e^(b*sdx) sdx

price 2.533488 15.51554 2.949496
weight .0027989 .0103708 .7771936

4 Appendix

4.1 Full syntax of estout

estout
[
namelist

] [
using filename

] [
, parameter statistics options

summary statistics option significance stars options layout options

labelling options output options defaults option
]

where namelist is either all or * or name
[
name ...

]
, and name is the name of

stored estimates. The results estimated last may be indicated by a period (.) even if
they have not yet been stored. For a detailed discussion of estout’s options, see the
online help. A brief list of the options is provided below. Note that 〈...〉 stands for[[
`
]
"
]
...

[
"
[
'
]]

and str list denotes 〈string〉
[
〈string〉 ...

]
.

The parameter statistics options are

cells({ array | none }) specify the contents of the table cells (co-
efficients, standard errors, etc.)

drop(droplist) drop individual parameters or equations

14 Making regression tables

keep(keeplist) keep individual parameters or equations

equations(eqmatchlist) match the models’ equations

{ eform
[
(pattern)

]
| noeform } display the results in exponentiated form

{ margin
[
({ u | c | p })

]
| nomargin } report marginal effects or elasticities

{ discrete(string) | nodiscrete } identify dummy variables when reporting
marginal effects

meqs(eq list) select equations for marginal effects

level(#) set the level for confidence intervals

where array is

〈row〉
[
〈row〉 ...

]
and row is

el
[
(el subopts)

] [
el

[
(el subopts)

]
...

]
and el is one of the following statistics

b raw coefficients
se standard errors
t t statistics
p p-values
ci confidence intervals
ci l lower bounds of confidence intervals
ci u upper bounds of confidence intervals
myel additional statistics included in e()

and the el subopts are[
no

]
star attach “significance stars”

fmt(%fmt
[
%fmt ...

]
) set the display formats

label(〈string〉) define a label for el

{ par
[
(〈left〉 〈right〉)

]
| nopar } place el in parentheses

drop(droplist) drop certain individual statistics

keep(keeplist) keep certain individual statistics

pattern(pattern) report el for selected models only[
no

]
abs use absolute t statistics

Ben Jann 15

The summary statistics option is

stats(scalarlist
[
, stats subopts

]
) specify scalar statistics to be displayed at

the bottom of the table

where the stats subopts are

fmt(%fmt
[
%fmt ...

]
) set the display formats

labels(str list
[
, label subopts

]
) label the scalar statistics

{ star
[
(scalarlist)

]
| nostar } denote overall model significance

The significance stars options are

starlevels(levelslist) define thresholds and symbols for “sig-
nificance stars”[

no
]
stardetach display the stars in their own column

where levelslist is

〈symbol〉 #
[
〈symbol〉 # ...

]
with # ∈ (0, 1] and listed in descending order.

The layout options are

varwidth(#) set the width of the table’s left stub

modelwidth(#) set the width of the results columns[
no

]
abbrev abbreviate long names and labels[

no
]
unstack place individual equations from multiple-

equation models in separate columns

begin(〈string〉) specify the beginning of the table rows

delimiter(〈string〉) specify the column delimiter

end(〈string〉) specify the ending of the table rows

dmarker(〈string〉) determine the decimal marker

msign(〈string〉) determine the minus sign[
no

]
lz print the leading zero of fixed format

numbers in (−1, 1)

substitute(subst list) apply end-of-pipe substitutions

where subst list is

〈from〉 〈to〉
[
〈from〉 〈to〉 ...

]

16 Making regression tables

The labelling options are

title(〈string〉) specify a title for the table[
no

]
legend add a legend explaining the significance

symbols

prehead(str list) add text lines before the table heading

posthead(str list) add text lines after the table heading

prefoot(str list) add text lines before the table footer

postfoot(str list) add text lines after the table footer[
no

]
label use variable labels

varlabels(matchlist
[
, varl subopts

]
) relabel the parameters

mlabels(str list
[
, mlabels subopts

]
) label the models

collabels(str list
[
, label subopts

]
) label the columns within models

eqlabels(str list
[
, label subopts

]
) label the equations

mgroups(str list
[
, mgroups subopts

]
) define and label groups of models

where the varl subopts are

blist(matchlist) assign specific prefixes to certain rows

elist(matchlist) assign specific suffixes to certain rows

label subopts

and the mlabels subopts are[
no

]
numbers number the models[

no
]
depvars use dependent variables as models’ labels

label subopts

and the mgroups subopts are

pattern(pattern) establish the grouping of the models

label subopts

and where the label subopts are[
no

]
none suppress the labels

prefix(〈string〉) add a common prefix

suffix(〈string〉) add a common suffix

begin(〈string〉) add an overall prefix

Ben Jann 17

end(〈string〉) add an overall suffix[
no

]
last print the last occurrence of end[

no
]
span span columns if appropriate

erepeat(〈string〉) add a “span” suffix

lhs(〈string〉) insert string into the left stub of the table

The output options are[
no

]
replace overwrite an existing file[

no
]
append append the output to an existing file[

no
]
type print the table in the results window[

no
]
showtabs display tabs as <T>s

The defaults option is

style(style) specify a “style” for the output table

where style is one of the following

tab tab delimited table (the default)
fixed fixed format table
tex table for use with LaTeX
html table for use with HTML
mystyle user defined addition

4.2 Using @-variables

estout features several variables that can be used within string specifications. The
following list provides an overview of these variables (also see the example in Section
3.2):

@span Returns the value of a count variable for the total number of physical
columns of the table if used in the labels in the blist() and elist()
suboptions of varlabels(), or in the text specified in prehead(),
posthead(), prefoot(), or postfoot().

@span Returns the number of spanned columns if used in the text specified
in the prefix() and suffix() suboptions of mgroups(), mlabels(),
eqlabels(), or collabels(), or in the labels specified in these options.

@span Returns the range of spanned columns (e.g. 2-4 if columns 2, 3 and 4
are spanned) if used in the text specified in the erepeat() suboption
of mgroups(), mlabels(), eqlabels(), or collabels().

18 Making regression tables

@M Returns the number of models in the table if used in the text specified
in prehead(), posthead(), prefoot(), or postfoot().

@title Returns the title specified with the title() option if used in the text
specified in prehead(), posthead(), prefoot(), or postfoot().

@discrete Returns the explanations provided by the discrete() option (provided
that the margin option is activated) if used in the text specified in
prehead(), posthead(), prefoot(), or postfoot().

@starlegend Returns a legend explaining the significance symbols if used in the text
specified in prehead(), posthead(), prefoot(), or postfoot().

4.3 Working with defaults files

estout’s style() option may be used to specifies a “style” for the output table. A
“style” is a named combination of options that is saved in an auxiliary file called
estout style.def. estout is already equipped with four such files. The four styles
and their particulars are:

settings styles
tab fixed tex html

begin <tr><td>
delimiter tab " " & </td><td>
end \\ </td></tr>
varwidth 0 12 12 12
modelwidth 0 12 12 12
abbrev off on off off

It is very easy to generate one’s own set of default options. Type

. estoutdef style, edit

to open one of the existing defaults files (where style is the name of the defaults set,
e.g., tab; the estoutdef command is provided with the estout package), make the
desired modifications and save the file as estout newstyle.def in the current directory
or elsewhere in the ado path (see [P] sysdir). To use the new options set, type:

. estout ..., style(newstyle)

estout has two main types of options, which are treated differentially in defaults files.
On the one hand, there are simple on/off options without arguments, like legend or
showtabs. To turn such an option on, enter the option followed by the options name
as an argument, i.e. add the line

option option

to the defaults file. For example,

Ben Jann 19

legend legend

specifies that a legend be printed in the table footer. Otherwise, if you want to turn
the option of, just delete or comment out the line that contains it (or specify option
without an argument).

To temporarily turn off an option that has been activated in a defaults file, specify
nooption in the command line (do not, however, use nooption in defaults files). For
example, if the legend has been turned on in the defaults file, but you want to suppress
it in a specific call of estout, type

. estout ..., nolegend

On the other hand, there are options that take arguments, such as prehead(args),
delimiter(args), or stats(args, ...). Such options are specified as

option args

in the defaults file (where args must not include suboptions; see below). Specifying an
option in the command line overwrites the settings from the defaults file. However, note
that a no form, which exists for the first options type, is not available here.

Last but not least, there are two options that reflect a combination of the first and
second types: eform

[
(args)

]
and margin

[
(args)

]
. These options can be specified as

either

option option

or

option args

in the defaults file; the no form is allowed.

Many estout options have suboptions, i.e., an option might take the form op-
tion(..., suboption) or option(..., suboption(args)). In the defaults file, the sub-
options cannot be included in the definition of a higher-level option. Instead, they must
be specified in their own lines, as either

optionsuboption suboption

or

optionsuboption args

In the case of a two-level nesting of options, the name used to refer to the suboption
is a concatenation of the option’s name and the suboption’s name, i.e. "optionsubop-
tion"="option"+"suboption". For example, the labels() suboption of the stats()
option would be set by the term statslabels. Analogously, the three level nesting in
the stats() option yields suboption names composed of three names. For instance, the
suboption called by the command

. estout ..., stats(..., labels(..., prefix(args)))

20 Making regression tables

would be referred to as

statslabelsprefix args

in the defaults file. The cells() option represents an exception to this rule. It may be
defined in the defaults file using only a plain array of cells elements without suboptions,
e.g.

cells "b se" p

However, the suboptions of the cells elements may be referred to as el suboption, for
example

b star star

or

se par []

Be aware that the support for comments in defaults files is limited. In particular,
the /* and */ comment indicators cannot be used. The other comment indicators work
(more or less) as usual, that is:

• Empty lines and lines beginning with * (with or without preceding blanks) will
be ignored.

• // preceded by one or more blanks indicates that the rest of the line should
be ignored. Lines beginning with // (with or without preceding blanks) will be
ignored.

• /// preceded by one or more blanks indicates that the rest of the line should be
ignored and the part of the line preceding it should be added to the next line. In
other words, /// can be used to split commands into two or more lines of code.

5 Acknowledgements

Some of the code of estout has been adapted from the official est table.ado. I would
like to thank Kit Baum, Elisabeth Coutts, Henriette Engelhardt, Jonathan Gardnerand,
Friedrich Huebler, Maren Kandulla, Clive Nicholas, Fredrik Wallenberg, Ian Watson,
and Vince Wiggins for their comments and suggestions.

6 References
Gallup, J. L. 1998. sg97: Formatting regression output for published tables. Stata

Technical Bulletin 46: 28–30.

—. 1999. sg97.1: Revision of outreg. Stata Technical Bulletin 49: 23.

—. 2000. sg97.2: Update to formatting regression output. Stata Technical Bulletin 58:
9–13.

Ben Jann 21

Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks (Calif.): Sage.

Newson, R. 2003. Confidence intervals and p-values for delivery to the end user. The
Stata Journal 3(3): 245–269.

About the Author

Ben Jann (jann@soz.gess.ethz.ch) is research assistant at the Department of Sociology of the

Swiss Federal Institute of Technology Zurich (ETH) and a Ph.D. candidate at the University

of Bern in Switzerland.

