
1 
 

 

 

 

Plant trees for the planet:  

the potential of forests for climate change 
mitigation and the major drivers of national 

forest area 
 

Sebastian Mader 

 

Institute of Sociology 
University of Bern 
Fabrikstrasse 8 

3012 Bern 
Switzerland 

 
Phone: +41 31 631 48 16 

Email: sebastian.mader@soz.unibe.ch 

ORCID: 0000-0003-3400-4715 

 

03 June 2019 

 

This is a post-peer-review, pre-copyedit version of an article published in Mitigation 
and Adaptation Strategies for Global Change. The final authenticated version is 
available online at: http://dx.doi.org/10.1007/s11027-019-09875-4.  

http://orcid.org/0000-0003-3400-4715
https://rdcu.be/bHoam


2 
 

Plant trees for the planet: the potential of forests for climate change mitigation and the 
major drivers of national forest area 

 

Abstract 
 
Forests are one of the most cost-effective ways to sequester carbon today. Here, I 

estimate the world’s land share under forests required to prevent dangerous climate 

change. For this, I combine newest longitudinal data of FLUXNET on forests’ net 

ecosystem exchange of carbon (NEE) from 78 forest sites (N=607) with countries’ 

mean temperature and forest area. This straightforward approach indicates that the 

world’s forests sequester 8.3 GtCO2yr-1. For the 2 °C climate target the current forest 

land share has to be doubled to 60.0 % to sequester an additional 7.8 GtCO2yr-1, which 

demands less red meat consumption. This afforestation/reforestation (AR) challenge 

is achievable, as the estimated global biophysical potential of AR is 8.0 GtCO2yr-1 

safeguarding food supply for 10 billion people. Climate-responsible countries have the 

highest AR potential. For effective climate policies, knowledge on the major drivers of 

forest area is crucial. Enhancing information here, I analyse forest land share data of 

98 countries from 1990 to 2015 applying causal inference (N=2,494). The results 

highlight that population growth, industrialization, and increasing temperature reduce 

forest land share, while more protected forest and economic growth generally increase 

it. In all, this study confirms the potential of AR for climate change mitigation with a 

straightforward approach based on the direct measurement of NEE. This might provide 

a more valid picture given the shortcomings of indirect carbon stock-based inventories. 

The analysis identifies future regional hotspots for the AR potential and informs the 

need for fast and forceful action to prevent dangerous climate change. 
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1 Introduction 

Forests provide many tangible and intangible ecosystem services integral for 

human well-being (e.g. Ellison et al. 2017, Federici et al. 2015). Beyond this, forests 

are considered one of the most suitable ways to sequester carbon today, as 

afforestation and reforestation (AR) are relatively cost-effective, and associated with 

least expected adverse effects on biogeochemical and biogeophysical systems (Fuss 

et al. 2018, Griscom et al. 2017, IPCC 2014, Smith et al. 2016, Sonntag et al. 2016). 

Recent global estimates on the current net carbon sink of established forests 

(i.e. carbon sequestration) range from 2.2 (Federici et al. 2015) to 8.0 (Grassi et al. 

2018, Oleson et al. 2013)1 to 8.8 gigatons of carbon dioxide per year (GtCO2yr-1; Pan 

et al. 2011). Evaluations of the maximum biophysical sequestration potential of AR 

vary from 1.1 to 12.1 GtCO2yr-1 (Smith et al. 2016, Minx et al. 2018, Ciais et al. 2013). 

However, all these estimates are based on the calculation of changes in carbon stocks 

along Intergovernmental Panel on Climate Change (IPCC) guidelines (IPCC 2006) or 

the Houghton bookkeeping method (Houghton et al. 2012), providing an indirect and 

mostly incomplete measure of forests’ net ecosystem exchange of carbon (NEE). This 

approach requires periodic information on the carbon content of biomass, and involves 

fundamental assumptions on carbon stocks – especially when reliable data is missing. 

This is notably true for many developing nations (Grassi et al. 2018, IPCC 2006). 

Moreover, each of these country estimates is based on different data quality, 

definitions of forest area, and accounting methods. Though data quality is gradually 

improving, this suggests a sizable challenge to develop a valid and internationally 

comparable inventory of global forest carbon fluxes based on indirect stock-based 

techniques (Grassi et al. 2018). 

                                                           
1 Results from the simulations of the Dynamic Global Vegetation Model (DGVM) Community Land 
Model (CLM) version 4.5 (Oleson et al. 2013; Table SI 8 in Grassi et al. 2018); 
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This study has four objectives: First, I provide estimates of the annual carbon 

sequestration of established forests, and the biophysical climate change mitigation 

potential of AR based on the direct micrometeorological measurement of NEE as 

provided by FLUXNET (NASA 2015) (section 2). With this direct measurement of 

above canopy carbon flux no information on carbon stocks is needed to infer NEE. 

Thus, NEE estimates based on FLUXNET data may provide a more valid picture of 

forests’ carbon sink and their mitigation potential. Second, with this straightforward 

approach, I infer the forest land share required to meet the 2 °C climate target and 

three AR scenarios to acquire this goal (section 3; see Appendix A Methods and 

Materials for details). Third and subsequently, I identify the countries with the largest 

climate liabilities, and economic capabilities while having the greatest mitigation 

potential through AR (section 4). 

Fourth, for effective policies targeted at enhancing forests and climate change 

mitigation, knowledge on the key drivers of forest area is essential. However, 

information on causal relationships of forest gain and loss is sparse, and 

unconsolidated (Aguilar and Song 2018, Morales-Hidalgo et al. 2015) with a focus on 

forest loss (Busch and Ferretti-Gallon 2017). Yet, this is only half of the story to be told. 

Thus, here I identify the major predictors of the forest land share of 98 countries from 

1990 to 2015 gathered from the Food and Agriculture Organization of the United 

Nations (FAO 2018) applying causal inference (section 5). The last section 

summarizes and discusses the main results, and closes with some concluding 

remarks. 
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2 Global and regional forest carbon sink 

To quantify the NEE of countries’ forests, I utilize the newest available 

micrometeorological FLUXNET data of 78 measurement towers in forests of 16 

countries on five continents from 2000 to 2014 (N=607; Table B.1 in Appendix B 

Supplementary Figures and Tables). Multiple linear ordinary least squares (OLS) 

regression identifies annual mean temperature as the main determinant of forests’ 

NEE (u-shaped relationship) in this data (Table B.2, and Figure B.1 in Appendix B). 

Model predictions on countries’ NEE of forests using countries’ average temperature 

taken from the World Bank (2018) show that established forests sequester -8.8 tCO2ha-

1yr-1 on average in 2015 (median: -9.2; Appendix A). This is rather close to prior 

assessments based on indirect measurements of NEE (Sohngen 2010). Portugal has 

the highest negative NEE with a net absorption of -15.1 tCO2ha-1yr-1, whereas the 

highest positive NEE is observed for Canada with a net release of 16.3 tCO2ha-1yr-1 

(Figure 1a). The forests of almost all countries are net absorbers of carbon, except the 

boreal forests in Canada, the Russian Federation, and Mongolia that are net sources 

of carbon. This might be due to diebacks of these boreal forests resulting from insect 

outbreaks and wildfires due to higher mean temperatures and droughts induced by 

climate change (Canadell and Raupach 2008). As introspection of Figure 1a reveals, 

NEE varies by climate forest domain following a u-shaped mean temperature – NEE 

relationship. The carbon sequestration of boreal forests is lowest with a mean NEE of 

-1.1 tCO2ha-1yr-1, while it is highest for temperate forests with -12.6 tCO2ha-1yr-1. 

Tropical forests’ NEE lies in-between with an average of -6.0 tCO2ha-1yr-1. This pattern 

is in line with former research (Brumme et al. 2005).  

Multiplying countries’ average NEE per hectare by their forest area (FAO 2018, 

Figure 1b) suggests an overall forest carbon sink of -8.3 GtCO2yr-1 or -1.1 tCO2yr-1 per 
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capita (p.c., UNPD 2017) in 2015. Carbon sequestration is highest in the forests of the 

United States and Brazil (-3.2 GtCO2yr-1 each), followed by China (-2.0 GtCO2yr-1), 

Australia (-1.5 GtCO2yr-1) and the Democratic Republic of the Congo (-1.1 GtCO2yr-1). 

The rest of the world’s countries has a net absorption of less than -1.0 GtCO2yr-1 each, 

and Canada, Mongolia, and the Russian Confederates have a substantial net release 

of 16.7 GtCO2yr-1 in sum.  

The global estimate of this rather simple approach using direct carbon flux 

measurements of NEE is fairly close to the estimates of two recent studies applying 

more complicated, indirect, carbon stock-based inventories of NEE (Grassi et al. 2018, 

Oleson et al. 2013, Pan et al. 2011). Grassi et al. (2018) report a global forest carbon 

sink of -8.0 GtCO2yr-1 for the Community Land Model (version 4.5; Oleson et al. 2013)2 

and Pan et al. (2011) estimate a sink of -8.8 GtCO2yr-1 based on changes in carbon 

stocks.  

  

                                                           
2 This Dynamic Global Vegetation Model (DGVM) could be considered one of the most elaborate 
DGVMs as it comprises the most relevant ecological characteristics as compared to other commonly 
used DGVMs (Table SI 7 in Grassi et al. 2018).  
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Figure 1 | Net ecosystem exchange (NEE) of CO2 of countries’ forests in 2015. a-c, Data source 
for the calculation of NEE of CO2 of countries’ forests is FLUXNET (NASA 2015), World Bank (2018) 
and FAO (2018). Negative numbers indicate net absorption of carbon, positive numbers its net release. 
a, Carbon sequestration in tCO2ha-1yr-1 of forest area (mean = -8.8, median = -9.2, min. (Portugal) = -
15.1, max. (Canada) = 16.3). b, Countries’ overall forest carbon sequestration in GtCO2yr-1 (sum = -8.3 
GtCO2yr-1). c, Countries’ overall NEE potential of afforestation/reforestation (AR) in GtCO2yr-1 based on 
scenario 3 exceeding the 7.8 GtCO2yr-1 required to meet the 2 °C respectively 3 tCO2 per capita climate 
target (sum = -8.0 GtCO2yr-1; see text and Appendix A for details). 
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3 Forest land share trends and AR scenarios 

Before evaluating countries’ climate change mitigation potential of AR (Figure 

1c), the current forest land share, suitable land for AR as well as competing land uses 

have to be quantified. The average forest land share as provided by the FAO shrunk 

from 31.8 % in 1990 to 30.8 % in 2015 (Figure 2), which corresponds to a forest loss 

of 1.3 Mkm2 – an area as large as Peru.  

 
Figure 2 | Forest land share in international comparison 1990 and 2015. Depicted are the top and 
bottom five countries, top five countries with respect to overall forest area (FAO 2018) by climate domain 
in 2015, and members of the G7 and BRIICS if not already included. Dark blue solid line = mean 2015; 
Grey solid line = mean 1990; Scenario 1: Red solid line = required forest share for the 2 °C climate 
target, red long-dashed line = achievable forest share; Scenario 2: red dashed line = achievable forest 
share; Scenario 3: Green solid line = required forest share, green short-dashed line = achievable forest 
share. See text and Appendix A for details. 

As Figure 2 shows, European countries like France, Italy, Germany, and 

Norway resemble the mean of 2015. The forest land share varies strongly: Laos ranks 

highest with 81.3 % and is followed by Papua New Guinea, Finland, Guinea-Bissau, 

and Sweden constituting the top five. The bottom five countries with almost no forests 

are Algeria, Saudi Arabia, Mauritania, Libya, and Egypt. Between 1990 and 2015 

Indonesia incurred the greatest loss of almost a quarter and Brazil as top carbon 

sequestering country lost 10.0 % of its tropical forests. The greatest gain was 
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accomplished by China with a one third increase in forest area while ranking third in 

overall NEE. For the United States as top carbon absorbing nation, almost no change 

in forest cover was observed in this period. 

Furthermore, Figure 2 presents the required as well as the achievable forest 

land share of three different AR scenarios to prevent dangerous climate change. The 

global annual gross carbon budget to fulfil the 2 °C climate target with a probability of 

at least 66 % is an estimated 30 GtCO2 (IPCC 2014, Friedlingstein et al. 2014, 

Meinshausen et al. 2009). Assuming an average annual world population of 9.8 billion 

people until 2100 (UNPD 2017), this goal translates into ~3 t of gross CO2 emissions 

per capita (p.c.) and year. 

First, scenario 1 is the baseline scenario. It assumes constant production and 

consumption patterns, constant other carbon sinks, and a further required emissions 

reduction of 1.0 tCO2yr-1 p.c. after accounting for the overall forest carbon 

sequestration of 0.8 tCO2yr-1 p.c.. Hence, in scenario 1 the required forest land share 

to meet the 2 °C respectively the 3 tCO2 p.c. climate target is 67.8 % (red solid line in 

Figure 2) to additionally sequester 9.8 GtCO2yr-1 (Appendix A). The red long-dashed 

line is the forest land share that can be achieved via 100 % AR of all shrub-covered 

areas and herbaceous vegetation as retrieved from the FAO (2018; 44.8 % forest land 

share). This is more than one third of the required AR. Second, in scenario 2 a forest 

land share of up to 57.5 % can be achieved by additionally afforesting and reforesting 

44 % of permanent grassland and cropland (FAO 2018), assuming current diets and 

an average land demand of 2,100 m2 p.c. (Hallström et al. 2015) for feeding an 

expected 9.8 billion people per year (red dashed line in Figure 2). This represents more 

than two thirds of this tremendous AR challenge. Finally, in scenario 3 healthier diets 

with reduced red and ruminant meat consumption decrease agricultural land demand 

further by 28.0 % to 1,510 m2 p.c. and reduce dietary-related emissions by 0.2 tCO2yr-
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1 p.c. (Hallström et al. 2015). This yields a required forest land share of 60.0 % to meet 

the 2°C climate target (green solid line in Figure 2) equivalent to an additional 7.8 

GtCO2yr-1 to be sequestered by forests. Thus, in this healthy diet scenario further AR 

of grassland and cropland results in an attainable 62.0 % of forest land share (8.0 

GtCO2yr-1; green short-dashed line in Figure 2). 

Consequently, the 2 °C climate target can be met by almost doubling the current 

forest area whilst safeguarding food security with a healthy diet. This outstanding 

challenge means 37.9 Mkm2 more of forest area or an estimated 2.6 trillion additional 

trees. Approximately, this corresponds to the number of trees lost since the start of 

human civilization (Crowther et al. 2015). This challenge translates into approximately 

260 trees p.c. or one tree p.c. per week for a realisation time of five years.  

Realizing the need for large-scale AR, there are promising worldwide projects 

like ‘Plant for the Planet’, which aims at planting one trillion trees. Since 2007, this 

project has planted 13.6 billion trees (Plant for the Planet 2019) – 0.5 % of the climate 

target. In 2017 the World Wildlife Fund, the Wildlife Conservation Society and BirdLife 

International launched the ‘Trillion Trees’ program aiming at restoring one trillion trees 

by 2050 (Trillion Trees 2019). Furthermore, the ‘Bonn Challenge’ strives for the 

restoration of 3.5 Mkm2 of forests by 2030 (~9.2 % of AR required for the 2 °C target). 

To date pledges exceed 1.7 Mkm2 (International Union for Conservation of Nature 

2019). To achieve the targets of all three voluntary initiatives together would account 

for the vast majority of the required AR (86 %). 260 trees per capita seems a relatively 

low number. However, the need for fast and forceful AR is high leaving this venture an 

ambitious challenge. 
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4 Liabilities, AR potentials, and capabilities 

Given that call, who is in charge of action? Being the country with the highest 

negative NEE of established forests (Figure 1b), and the world’s second largest carbon 

emitter (Janssens-Maenhout et al. 2017), the United States of America rank highest in 

the climate change mitigation potential of countries through AR (NEE = -1.0 GtCO2yr-

1; Figure 1c). Figure 1c also demonstrates that the world’s largest carbon emitter and 

third largest carbon absorber in forests, China, has the second highest AR potential (-

0.8 GtCO2yr-1). This offers a great opportunity for the United States, and China, 

accounting for almost half of the global carbon emissions and having to bear one of 

the highest domestic social costs of carbon emissions (Ricke et al. 2018), to take their 

responsibility for climate change mitigation seriously. Together with Australia, 

Argentina, and Brazil they form the top five countries with respect to mitigation potential 

through AR, accounting for almost half of its total.  

The radar plots in Figure 3 provide a more comprehensive picture of the 

countries’ climate change liabilities, forests’ mitigation contributions, AR potentials, and 

economic capabilities for action in worldwide comparison. One group of countries at 

the top of the ranking of the sum score of these characteristics is formed by those 

ranking highest in mitigation potential of AR, while being among the largest emitters of 

CO2 (p.c.) and the wealthiest nations (Figure 3a-c,e-j,n). These countries are Japan, 

Spain, France, Australia, the United States, Argentina, Italy, Germany, Brazil, and the 

United Kingdom. Hence, these states could take over their responsibility for climate 

change mitigation relatively easily via large-scale domestic AR activities. Figure 2 

indicates that the forest land share of three of these countries, France, Italy, and the 

United Kingdom, grew between 1990 and 2015, while Brazil, and Argentina 

experienced forest loss. 
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Another group of nations is both liable of global warming and has high AR 

potential, but to some extent lacks economic strength to implement large-scale 

measures. Countries like China, Peru, South Africa, Indonesia, and India fall into this 

group (Figure 3k-m,o,p). Indonesia and Peru reflect this, since these countries lost 

forests between 1990 and 2015 (Figure 2). By contrast, China, and India gained forest 

in this period probably due to large-scale AR programs. These nations and poor 

countries with little climate responsibility but large AR potential like the Democratic 

Republic of the Congo (Figure 3t) need multilateral financial assistance, foremost from 

wealthy, climate-responsible states, to unfold their AR potential. This applies to 

countries, which additionally have relatively low or no AR mitigation potential like South 

Korea, Sweden, Canada, and the Russian Federation (Figure 3d, q-s). This could be 

a worthwhile enhancement of the REDD+ (Reducing Emissions from Deforestation 

and Forest Degradation) framework.  
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Figure 3 | Country ranking of climate responsibility, forests’ mitigation contribution and 
potential, and economic capabilities in 2015. a-y, Radar plots of countries’ relative performance with 
regard to climate responsibility (CO2, and CO2 per capita (p.c.) emissions (Janssens-Maenhout et al. 
2017)), forests’ mitigation contribution (forest land share (%; FAO 2018), net ecosystem exchange 
(NEE) per ha, and national NEE), forests’ mitigation potential (NEE potential)), and economic 
capabilities (gross domestic product (GDP) p.c. (IMF 2018)). The numbers 1 to 5 on the spokes of the 
radars indicate the quintile the country ranks (1 = lowest, 5 = highest). The numbers in the centre of 
each radar represent the sum of quintiles of each country. Presented are the top and bottom five 
countries with respect to this sum, the top five countries of overall forest area by climatic forest domain 
and members of the G7 and BRIICS. The full country ranking of the sum score and all included variables 
can be obtained from Table B.4 in Appendix B.  
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5 Predictors of national forest land share 

Nonetheless, the plea for international cooperation and referring to climate 

change responsibility is not enough. For effective policies targeted at the enhancement 

of forests, profound knowledge on the key drivers of national forest area is crucial. 

Previous research has focused on determinants of forest loss with different regional 

and temporal cover and a focus on satellite-derived data in recent years (Busch and 

Ferretti-Gallon 2017, Leblois et al. 2017). However, these studies are agnostic about 

AR and forest regrowth, as some authors critically remark themselves (DeFries et al. 

2010). Focusing on forest loss only shines light on half of the story to be told. Hence, 

causal information on the predictors of national forest land share analysing panel data 

of many countries by means of causal inference is still sparse and unconsolidated 

(Aguilar and Song 2018, Morales-Hidalgo et al. 2015).  

Aguilar and Song (2018), and Morales-Hidalgo et al. (2015) are the only two 

studies regressing changes in national forest area as provided by the FAO on changes 

in countries’ socioeconomic characteristics utilizing fixed effects (FE) panel regression 

models. Morales-Hidalgo et al. (2015) is the first study regressing national forest area 

between 1990 and 2015 gathered from the FAO on a few socio-economic and political 

indicators applying causal inference. The results of their country and year FE panel 

regression models (Table 6 in Morales-Hidalgo et al. 2015) suggest that population 

growth reduces forest area, whereas GDP p.c. and protected areas increase it. 

Nonetheless, the results of Morales-Hidalgo et al. (2015) could be biased by omitting 

other substantial drivers of forest land share. Aguilar and Song (2018) is the only study 

analysing the ratio between national forest area and land area (i.e. forest land share) 

ensuring comparability of changes in forest cover between countries irrespective of 

their total land area. In their FE models, Aguilar and Song (2018) include agricultural 

land area, 10-year lagged GDP growth rate, GNI p.c., population growth rate, 
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population density, share of rural population, rate of secondary school enrolment, its 

15-year lagged values, and the squares of all these characteristics as independent 

variables. The results of their beta-logistic generalized linear mixed models with ratio 

response indicate that all of the considered covariates are substantially related to forest 

land share (Table 3 in Aguilar and Song 2018). However, FE models including both 

levels and lags of the same characteristics produce biased results, if the causal effects 

emerge immediately (Vaisey and Miles 2017), as it is the case in Aguilar and Song 

(2018). Furthermore, the results of Aguilar and Song (2018) could be biased by 

omitting important confounding variables.  

To improve, consolidate and expand previous studies, here I regress the forest 

land share of 98 countries from 1990 to 2015 as provided by the FAO on socio-

economic, political, and ecological characteristics applying country and year FE 

regression models (Brüderl and Ludwig 2015; Appendix A). The 98 countries analysed 

(Table B.7) have high or sufficient quality of forest area data (tiers 3 and 2; FAO 2016) 

and comprise around 89 % of global forest area in 2015 (Keenan et al. 2015). All other 

countries, which have unreliable data solely based on expert estimates (tier 1) are 

excluded from the analysis.  

First, one of the best-documented drivers of deforestation is agricultural 

expansion (Jorgenson 2006). As model 1 of Figure 4 shows, a 1 % within-country 

increase in agricultural land share on average leads to a 0.2 % within-country decrease 

in the forest land share. Population growth explains this effect, as it disappears when 

population size is included in the regression (model 2). Population growth of 1 % yields 

deforestation of 0.27 %. This suggests that agricultural expansion allows population 

growth, which in turn exerts pressure on forests because of land demands for housing, 
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mobility, and other resources.3   

 
Figure 4 | Predictors of national forest land share. Coefficient plots of unstandardized regression 
coefficients (dark blue filled circles) of country and year fixed effects regressions of national forest land 
share on various successively included predictors (models 1-6) including 95 % confidence intervals 
(dark blue bars; see Table B.5 in Appendix B for details). All six models contain dummy variables for 
each year to control for overall time-trends. All variables are included by taking their natural logarithm 
allowing the estimation of elasticities. ‘n’ refers to the number of countries, and ‘N’ to the number of 
observations (number of countries (n) times the number of years). Table B.6 in Appendix B describes 
all variables and Table B.7 lists all countries included in the models. 

 

Second, it has often been hypothesized that urbanization slows deforestation 

and promotes AR, because the per capita land demand of cities is assumed to be lower 

as compared to rural areas (Jorgenson 2006). However, the models 2-6 of Figure 4 

reveal that increasing rates of the population living in urban areas are not substantially 

related to countries’ forest area.  

Third, the direction of the impact of growing wealth on forest cover is widely 

discussed in the literature (e.g. Jorgenson 2006). There has been widespread consent 

that deforestation activities prevail at low and middle levels of gross domestic product 

(GDP) p.c. and AR activities outweigh deforestation at higher levels of GDP p.c. 

following a trajectory referred to as the environmental Kuznets curve (EKC; Aguilar and 

                                                           
3 Moreover, in the FE regression of population (N=2504, n=98), the elasticity of agricultural land is 0.49 
(p < 0.001). Together with the results of the models 1 and 2 of Figure 4, this suggests that population 
growth mediates the relationship between agricultural expansion and forest loss. 
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Song 2018). However, the empirical evidence for a forest EKC is mixed and the two 

most recent and elaborate studies found evidence for a clear positive relationship 

between GDP and forest cover invalidating the forest EKC hypothesis (Aguilar and 

Song 2018, Morales-Hidalgo et al. 2015). Models 3-6 of Figure 4 highlight this as well: 

Economic growth of 1 % increases forest land share by 0.1 % irrespective of economic 

structure and wealth levels.4 Hence, this supports the notion that wealth at least to 

some extent leads to more awareness for the ecosystem services of forests and the 

need to protect them.  

In addition to that and extending prior studies, economic structural change could 

affect forest transition net of GDP growth. An increasing GDP share of the industry 

sector might introduce pressure on forestlands because of relatively high land 

requirements of industrial production sites and higher returns for industrial production 

than for forest products. As models 3-6 of Figure 4 indicate, there is some evidence in 

favour of this argument, because a 1 % increase in the GDP share of the industry 

sector yields a 0.1 % decrease in forest land share. In turn, expansion of the service 

sector could release pressure from forests, as services are presumed to have less land 

demand. However, in the data there is no support for this notion, since a 1 % increase 

in the GDP share of the service sector is also related to a 0.1 % decline in forest cover. 

Yet, this effect is not statistically significant at the p = 0.05 level.  

Furthermore, the model is enhanced by including an indicator of foreign trade 

in forest products. It has been a common concern that forest products trade could be 

one of the reasons for deforestation especially in poor countries with tropical forests 

and few alternatives of employment to timber logging or farming. By contrast, one can 

argue that foreign trade of forest products could be an incentive for forest conservation, 

                                                           
4 The partial residual plot for GDP of a penalized splines FE regression (Ruppert et al. 2003) adequately 
modelling non-linearities confirms this, too (Figure B.2 in Appendix B). 
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when the net return of forestry investments and sustainable forest management is 

greater than the net return for forest clearing for agricultural production (Burgess 1993). 

However, models 4-6 of Figure 4 demonstrate that increases in exports of forest 

products relative to their imports do not substantially alter countries’ forest area. 

Moreover, policies for forest protection may contribute to stop deforestation and 

forest degradation, and foster AR activities with the aim of enhancing the global forest 

carbon sink, conserving biodiversity, and safeguarding other ecosystem services of 

forests. These goals are part of manifold international initiatives and agreements on 

forest protection. Designating and managing protected areas has been a primary 

strategy to achieve these goals (Morales-Hidalgo et al. 2015). Hence, protected forest 

area serves as an indicator for a country’s willingness to sustain the ecosystem 

services of forests and to commit to AR activities. As models 5 and 6 of Figure 4 reveal, 

a 1 % increase in protected forest area is associated with forest growth of 0.06 %. This 

effect is statistically significant, but rather small. This is in line with the results of Moral-

Hidalgo et al. (2015). 

Finally, climate change itself might harm forest ecosystems leading to forest 

degradation and forest loss. Long-term case studies of tree mortality indicate that 

higher mean temperature and droughts increase tree mortality and the frequency of 

wildfires (Canadell and Raupach 2008, Young et al. 2017, Martin 2015). However, it is 

still unclear whether this also applies to forest loss on a global scale. As model 6 of 

Figure 4 shows, a 1 % increase in countries’ mean air temperature reduces their forest 

area on average by 0.1 %, while severe drought events do not affect forest cover 

immediately and ceteris paribus. This suggests that global warming contributes to 

forest loss, even though the effect is rather small. 
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6 Discussion and Conclusion 

Altogether, this study suggests that dangerous climate change could be 

prevented solely by AR, as forests’ biophysical climate change mitigation potential 

safeguarding food security with healthy diets (scenario 3) exceeds the required 

additional carbon uptake for the 2 °C target. For this, the study estimates countries’ 

carbon sequestration of forests based on the direct micrometeorological measurement 

of NEE, average temperature and forest area. This straightforward, direct carbon flux-

based method provides estimates that are comparable to the most recent studies 

applying more complicated, indirect carbon stock-based inventories of NEE. The direct 

approach followed here might provide a more valid picture given the outlined 

shortcomings of indirect carbon stock-based inventories. However, the direct approach 

rests on the assumption that countries’ average temperature is a valuable 

approximation of the mean climatic conditions of their forests. Moreover, uncertainties 

stem from data gaps on the NEE of tropical forest biomes, as Figure B.1 in Appendix 

B demonstrates. Further uncertainties may arise from varying tree density, age, 

species, species richness and the health of forests (Hawes 2018). Hence, further 

validation of these initial findings is needed. This includes the establishment of 

additional and more precise FLUXNET measurement towers especially in tropical 

forests to close data gaps, and to increase accuracy and spatial resolution of model 

predictions.  

Furthermore, the analysis identifies future regional hotspots for the AR potential. 

The United States, China, Australia, Argentina, and Brazil are the top five countries 

with respect to mitigation potential through AR, accounting for almost half of its total. 

However, to unfold the AR potential effectively, it is vital to establish a global mandatory 

carbon certificate market incorporating the forest carbon sink of countries and private 

forest owners. This generates financial incentives to restore and sustain forest biomes 
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(Sohngen 2010). Enriching voluntary initiatives like REDD+ with countries’ AR 

potentials, climate-liabilities, and economic capabilities might be a valuable starting 

point for that.  

Evenly important, the analysis of the major drivers of countries’ forest land share 

highlights that curbing agricultural expansion and population growth may be a focus 

for AR policies. Moreover, forests’ vulnerability to global warming points to the 

necessity to plant the right trees in the right places. Therefore, sustainable regional 

forest management needs to identify the tree species most resilient to temperature 

increases, and enhance the biodiversity of forests (Huang et al. 2018, Liang et al. 

2017). Together with growing wealth, the expansion of protected forest areas is a 

suitable way to amplify the forest carbon sink, conserve biodiversity, and safeguard 

other vital ecosystem services provided by forests. 

Nevertheless, biophysical, social, and economic challenges alongside large-

scale AR might jeopardize its potential benefits (e.g. Canadell and Raupach 2008, 

Smith et al. 2016, Fuss et al. 2018), and contest the feasibility of the three presented 

AR scenarios. In general, all three presented AR scenarios a priori exclude land cover 

types that are, by themselves, biophysically unsuitable for near-term and cost-efficient 

AR (i. e. artificial surfaces, permanent snow and glaciers, terrestrial barren land, and 

sparsely natural vegetated areas). In addition, all scenarios safeguard food supply for 

10 billion people. However, the feasibility of all three scenarios more or less depends 

on the socio-economic pressure exerted on the land designated to be 

afforested/reforested. Griscom et al. (2017) report that almost half of the existing AR 

potential could be cost-effectively realized below US$100 tCO2-1 (the estimated social 

cost of 1 tCO2 emitted within the 2 °C climate target). More than 10 % of the AR 

potential are achievable at low cost (<US$10 tCO2-1). At least part of scenario 1, the 

AR of shrub-covered and herbaceous vegetation, might be reachable at low cost. 
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However, costs are expected to be higher for the AR of agricultural land (permanent 

grassland and cropland; scenarios 2 and 3). Agricultural expansion and increases in 

population density increase the opportunity costs of not clearing forests and the costs 

of AR, and decrease forest cover (as shown in this study). Near-term costs might be 

even higher, when a large-scale diet transition away from red and ruminant meat is 

demanded to free up additional land for AR (scenario 3). Yet, meat reduced diets are 

regarded as ‘win-win diets’ fostering both public health and the environment in the long-

run (Willett et al. 2019). Moreover, and as this study demonstrates, the growing wealth 

of nations decreases the relative costs of AR and conveys forest protection and AR. 

Nonetheless, well-tailored AR policies have to account for possible trade-offs between 

climate change mitigation through AR and benefits for the local population. Here, 

agroforestry and policies targeted at the promotion of timber as building material whilst 

substituting carbon-intensive concrete and steel could be especially beneficial, and 

may substantially promote climate change mitigation (Oliver et al. 2014, Tollefson 

2017).  

All told, permanent carbon storage is a prerequisite to outpace the burning of 

fossil carbon and reduce the CO2 concentration in the atmosphere. Hence, it is vital to 

combine sustainably managed, large-scale AR activities with technologies for 

permanent carbon storage like bioenergy with carbon capture and storage (BECCS) 

at the end of the trees’ life cycle for effective climate change mitigation (Fuss et al. 

2018, Smith et al. 2016). What is more, abating emissions and applying other negative 

emissions technologies are valuable in order to hedge the impact of potential side 

effects of one mitigation option like AR (Minx et al. 2018, Sohngen 2010, Fuss 2010) 

to keep up with the need for fast and forceful action to prevent dangerous climate 

change. 
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Appendices 

A. Methods and Materials 

Global and regional forest carbon sink 

To assess the net ecosystem exchange of carbon (NEE) of countries’ forests I use the newest 

available direct measurements of NEE of 78 micrometeorological measurement towers located in 

forests of 16 countries from 2000-2014 provided by FLUXNET (NASA 2015). See Table B.1 in Appendix 

B for an overview of the analysed tower sites. FLUXNET sites collect data on the exchanges of CO2 

between forests and the atmosphere, precipitation and air temperature at least in a 30 minutes interval. 

Table B.3 provides a summary of the descriptive statistics. The tower sites use eddy covariance 

methods to measure forests’ NEE. The unique dataset utilized here, ‘FLUXNET2015’, provides 

standardized values for these characteristics and underwent several quality control tests and gap-filling 

(Pastorello et al. 2017).  

To infer the NEE of countries’ forests from these 78 FLUXNET sites I apply a straightforward 

approach consisting of three steps: Firstly, I regress their annual NEE on several site characteristics 

(average temperature, average temperature squared, precipitation, latitude, and elevation) controlling 

for overall time-trends by including dummy variables of the years observed. While primarily interested 

in the variation between the forest sites, the inclusion of the 607 site-years available for this model 

minimize the influence of a specific observation period stemming from annual variation in climatic and 

other conditions. Therefore, all standard errors are clustered by tower site to ensure robustness with 

respect to heteroscedasticity and autocorrelation. The results of this linear ordinary least squares (OLS) 

regression model (Table B.2) indicate that only average temperature substantially relates to NEE. As 

Figure B.1 shows, the temperature – NEE relationship of forests follows a u-shaped pattern. Forests 

with an annual mean temperature of -5 to 0 °C are net emitters of carbon, whereas the carbon 

sequestration of forests is highest in climatic domains with an average of about 15 °C. Even higher 

temperatures are associated with lower sequestration. Note that uncertainty between 15 and 26 °C is 

relatively high, because of a rather limited number of tower sites in this climatic forest domain. The 

reported regression results of Table B.2 were tested for robustness: First, the model was rerun excluding 

one measurement tower each time from the regression. Second, all parameters were tested for linearity 

including a penalized splines fixed effects (FE) regression model (Ruppert et al. 2003). Furthermore, 

the robustness of standard errors was investigated via non-parametric bootstrapping. None of these 
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checks had any substantial influence on the estimates. In addition, the robustness of all estimates with 

respect to model specification was assessed using the procedure suggested by Young and Holsteen 

(2017). The potential influence of omitted variables was examined using the method suggested by Frank 

(2000). Also these checks detected no fundamental deviations from the reported results. The analyses 

were conducted using the statistical software package STATA 15.1. 

Secondly, I predict the mean annual sequestration between the years 2000 and 2014 (t) of 

country i’s forests in tons CO2 per hectare (𝑦𝑦𝑖𝑖) from model 1 of Table B.2 according to the following 

formula: 

𝑦𝑦𝑖𝑖 = 1
𝑇𝑇
∑ (𝛽𝛽0𝑇𝑇
𝑡𝑡=1 + 𝛽𝛽1𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑎𝑎𝑖𝑖𝑖𝑖2 + 𝛽𝛽3𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑡𝑡)         (Eq. A.1). 

𝛽𝛽0 represents the model intercept. 𝑎𝑎𝑖𝑖𝑖𝑖 stands for the average air temperature of country i in year t, 𝛽𝛽1 

for the regression coefficient of the sites’ average temperature, and 𝛽𝛽2 for the coefficient of its square. 

𝑏𝑏𝑖𝑖 denotes country i’s centroid’s latitude, and 𝛽𝛽3 the regression coefficient for the forest sites’ latitude. 

𝛾𝛾𝑡𝑡  represents the regression coefficient for year t. With 𝛽𝛽0=5.60, 𝛽𝛽1=-2.20, 𝛽𝛽2=0.07, 𝛽𝛽3=-0.06 from 

model 1 of Table B.2 follows: 

𝑦𝑦𝑖𝑖 = 1
𝑇𝑇
∑ (5.60𝑇𝑇
𝑡𝑡=1 − 2.20𝑎𝑎𝑖𝑖𝑖𝑖 + 0.07𝑎𝑎𝑖𝑖𝑖𝑖2 − 0.06𝑏𝑏𝑖𝑖 + 𝛽𝛽𝑡𝑡)        (Eq. A.2). 

Data for 𝑎𝑎𝑖𝑖𝑖𝑖 is taken from the Climate Change Knowledge Portal of the World Bank (2018; Table 

B.6), and from the Country Geography Database of Portland State University (2018) for 𝑏𝑏𝑖𝑖. Computation 

of Eq. A.2 yields a global average of -8.8 tCO2ha-1yr-1 (median = -9.2, sd. = 4.8, min. = -15.1, max. = 

16.3) sequestered by forests in 2015. With roughly 2.7 trillion trees (Crowther et al. 2015) in the 40.0 

Mkm2 (FAO 2018) of forests worldwide, this translates into a mean of -8.8 kgCO2yr-1 per tree (tropical 

forests (latitude 0° to <25° North (N) or South (S)): -8.4, temperate forests (25° to <50° N or S): -17.3, 

boreal forests (≥50° N): -1.9) as weighted by the share of trees by forest type (tropical: 0.48, temperate: 

0.24, boreal: 0.27; Crowther et al. 2015). 

Thirdly, simply multiplying countries’ average NEE per hectare by their forest area gathered 

from the FAO (2018) gives countries’ forest carbon sink. Summing up yields an estimate for the global 

forest carbon sequestration of -8.3 GtCO2yr-1 or -1.1 tCO2yr-1 per capita (p.c.; UNPD 2017). 
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Afforestation/reforestation (AR) scenarios 

To prevent dangerous climate change, the required and achievable forest land share of three 

different AR scenarios are developed. The basis for these scenarios is the 2 °C target and the associated 

remaining carbon budget until 2100. With the Paris Climate Agreement, the world community has agreed 

upon the limitation of global warming to well below 2 °C relative to preindustrial levels (UNFCCC 2015). 

A maximum of 2 °C of warming until 2100 may provide a relatively safe operating space for humanity 

and prevent dangerous climate change alongside a lock-in of a ‘Hothouse Earth’ pathway with potentially 

hazardous consequences for ecosystems and human socio-economic systems (IPCC 2014, Steffen et 

al. 2018, Fischer et al. 2018, Rockström et al. 2009). Yet, humanity allegedly has already committed to 

1.3 °C of warming (Mauritsen and Pincus 2017). Hence, limiting global warming to 1.5 °C and 

presumably providing an even safer operating space (IPCC 2018) seems out of reach (Raftery et al. 

2017). Global CO2 emissions of fossil fuel use and industrial processes have risen to 35.8 GtCO2 or 4.8 

tCO2 per capita (p.c.) in 2016 (Janssens-Maenhout et al. 2017). This surpasses the global annual gross 

carbon budget (an estimated 30 GtCO2) to fulfil the 2 °C target with a probability of at least 66 % (IPCC 

2014, Friedlingstein et al. 2014, Meinshausen et al. 2009). Assuming an average annual world 

population of 9.8 billion people until 2100 (UNPD 2017) this goal translates into ~3 t of gross CO2 

emissions p.c. and year. 

Scenario 1 is the baseline assuming business-as-usual production and consumption patterns, 

constant other carbon sinks, further required emission reductions of 1.0 tCO2yr-1 p.c. after accounting 

for the overall forest carbon sequestration of 0.8 tCO2yr-1 p.c. with an expected average population of 

9.8 billion people per year until 2100. Hence, the required additional absorption by forests for the 2 °C 

respectively the 3 t p.c. target is 9.8 GtCO2yr-1. Assuming similar carbon sequestration of established 

forests and afforested/reforested land, simple solution of the rule of three and addition to the existing 

forest area (40.0 Mkm2) delivers a required forest area of 88.0 Mkm2. With a global land area of 129.7 

Mkm2 (FAO 2018) this corresponds to a forest land share of 67.8 % necessary to reach the 2 °C target 

with AR activities alone. This implicitly assumes similar tree density, species, species richness and forest 

health of afforested/reforested land and established forests. To quantify the land area suitable for AR, 

land unsuitable for near-term and cost-efficient AR was excluded. These land cover types are artificial 

surfaces (including urban and associated areas), permanent snow and glaciers, terrestrial barren land, 

and sparsely natural vegetated areas as quantified by the FAO (2018). 100 % AR of all shrub-covered 
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areas and herbaceous vegetation (18.1 Mkm2) result in an achievable 44.8 % of forest land share in this 

scenario. 

Scenario 2 further assumes current diets and an associated demand of agricultural land of 2,100 

m2 p.c. (Hallström et al. 2015). As there are 3,770 m2 p.c. of agricultural land currently available, 44 % 

of permanent grassland and cropland (FAO 2018) can be additionally afforested/reforested (16.4 Mkm2) 

for feeding an expected 9.8 billion people per year. Hence, a forest land share of 57.5 % can be realized 

in scenario 2 (77.6 Mkm2). This accounts for more than two thirds of the AR climate target outlined in 

scenario 1.  

To achieve the AR target fully, further reduction in the demand for agricultural land is required. 

In scenario 3 healthier diets with reduced red and ruminant meat consumption further decrease 

agricultural land demand by 28.0 % to 1,510 m2 p.c. while dietary-related emissions decrease by 0.2 

tCO2yr-1 p.c. (Table 1 in Hallström et al. 2015). Hence, this reduction in carbon emissions implies a 

global reduction of the required carbon uptake by forests of 2.0 GtCO2yr-1 to 7.8 GtCO2yr-1. This 

resembles a required forest land share of 60.0 % or 77.9 Mkm2 of forest area. Via a further 28.0 % AR 

of permanent grassland and cropland a forest land share of 62.0 % or 80.4 Mkm2 of forest area can be 

achieved to additionally sequester 8.0 GtCO2yr-1.  

 

Predictors of national forest land share 

Compared to cross-sectional regression models, the FE panel model has the advantage of 

exploiting the longitudinal structure of the data as it only includes within-country variation. Hence, the 

FE model is not biased by cross-sectional unobserved heterogeneity (Brüderl and Ludwig 2015, 

Wooldridge 2010). If the strict exogeneity assumption (r (𝒙𝒙𝑖𝑖𝑖𝑖 ,𝜀𝜀𝑖𝑖𝑖𝑖) = 0) holds, FE models adequately 

estimate unbiased causal effects (Vaisey and Miles 2017). The model can be written as 

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 = (𝒙𝒙𝑖𝑖𝑖𝑖 − 𝒙𝒙�𝑖𝑖)𝜷𝜷 + 𝒁𝒁𝑡𝑡𝜸𝜸 + 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑖̅𝑖                                                 (Eq. A.3). 

Here, yit denotes the forest land share of country i in year t. 𝑦𝑦�𝑖𝑖 represents country i’s mean of 

the whole observation period. xit stands for the vector of all exogenous variables for country i at time t, 

and 𝒙𝒙�𝑖𝑖 for the average of the time observed. The model further comprises a vector of dummy variables 

(Z) for every year to control period effects for all countries (time FE). A country’s time varying stochastic 

error term is represented by 𝜀𝜀it. All metric variables are included by taking their natural logarithm, which 

allows the estimation of elasticities. All standard errors are clustered by country and year, and are 
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therefore robust with respect to heteroscedasticity and autocorrelation. The reported regression results 

of Figure 4 were tested for robustness analogous to the results of the analysis for the FLUXNET data 

as already explained above. Furthermore, all six models were recalculated using the total forest land 

area as dependent variable instead of forest land share. None of these checks detected any substantial 

deviations from the results reported in Figure 4. 
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B. Supplementary Figures and Tables 

Table B.1 | FLUXNET micrometeorological measurement towers in forests included in the 
regression analysis by country (NASA 2015).   

Country Tower site 
code 

Reference 
paper 

Country Tower site 
code 

Reference 
Paper 

Country Tower site 
code 

Reference 
paper 

Belgium BE-Vie Aubinet et al. 
(2001) 

French 
Guyana 

GF-Guy Bonal et al. 
(2008) 

United 
States 

US-Blo Falge et al. 
(2002) 

Brazil BR-Sa1 Hayek et al. 
(2018)  

Germany DE-Hai Knohl et al. 
(2003) 

 US-GBT Zeller and 
Nikolov 
(2000) 

BR-Sa3 Saleska et 
al. (2003) 

 DE-Lkb Lindauer et 
al. (2014) 

 US-GLE Frank et al. 
(2014) 

Canada CA-Gro McCaughey 
et al. (2006) 

 DE-Lnf Anthoni et al. 
(2004) 

 US-Ha1 Barford et al. 
(2001) 

CA-NS1 Goulden et 
al. (2006)  

 DE-Obe Bernhofer et 
al. (2008) 

 US-KS1 Dore et al. 
(2003) 

CA-NS2 Bond-
Lamberty et 
al. (2004) 

 DE-Tha Grünwald 
and 
Bernhofer 
(2007) 

 US-Me1 Irvine et al. 
(2007) 

CA-NS3 Bond-
Lamberty et 
al. (2004) 

Ghana GH-Ank Chiti et al. 
(2010) 

 US-Me2 Law et al. 
(2004) 

CA-NS4 Schmidt et 
al. (2011) 

Italy IT-CA1 Sabbatini et 
al. (2016) 

 US-Me3 Sun et al. 
(2004) 

CA-NS5 Bond-
Lamberty et 
al. (2004) 

 IT-CA3 Sabbatini et 
al. (2016) 

 US-Me4 Law et al. 
(2004) 

CA-Oas Chen et al. 
(2003) 

 IT-Cp2 Fares et al. 
(2014) 

 US-Me5 Law et al. 
(2004) 

CA-Obs Chen et al. 
(2003) 

 IT-Cpz Garbulsky et 
al. (2008) 

 US-Me6 Ruehr et al. 
(2012) 

CA-Qfo Bergeron et 
al. (2007) 

 IT-Isp Ferréa et al. 
(2012) 

 US-MMS Baldocchi et 
al. (2005) 

CA-SF1 Amiro et al. 
(2006) 

 IT-La2 Marcolla et 
al. (2003) 

 US-Oho Chu et al. 
(2016) 

CA-TP1 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Lav Marcolla et 
al. (2003) 

 US-PFa Desai et al. 
(2008) 

CA-TP2 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-PT1 Migliavacca 
et al. (2009) 

 US-Prr Kobayashi et 
al. (2014) 

CA-TP3 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Ren Montagnani 
et al. (2009) 

 US-Syv Desai et al. 
(2005) 

CA-TP4 Arain and 
Restrepo-
Coupe 
(2005) 

 IT-Ro1 Rey et al. 
(2002) 

 US-UMd Gough et al. 
(2013) 

CA-TPD Schmidt et 
al. (2011) 

 IT-Ro2 Tedeschi et 
al. (2006) 

 US-WCr Desai et al. 
(2005) 

Czech 
Republic 

CZ-BK1 Acosta et al. 
(2013) 

 IT-SR2 Gruening et 
al. (2013) 

 US-Wi0 Desai et al. 
(2008) 

Denmark DK-Sor Pilegaard et 
al. (2011) 

 IT-SRo Chiesi et al. 
(2005) 

 US-Wi1 Desai et al. 
(2008) 

Finland FI-Hyy Suni et al. 
(2003) 

Netherlands NL-Loo Moors (2012)  US-Wi2 Desai et al. 
(2008) 

FI-Let Koskinen et 
al. (2014) 

Panama PA-SPn Wolf et al. 
(2011) 

 US-Wi3 Desai et al. 
(2008) 

FI-Sod Thum et al. 
(2007) 

Russian 
Federation 

RU-Fyo Kurbatova et 
al. (2008) 

 US-Wi4 Desai et al. 
(2008) 

France FR-Fon Delpierre et 
al. (2016) 

RU-SkP Maximov 
(2012) 

 US-Wi5 Schmidt et 
al. (2011) 

FR-LBr Berbigier et 
al. (2001) 

Switzerland CH-Dav Zielis et al. 
(2014) 

 US-Wi8 Desai et al. 
(2008) 

FR-Pue Rambal et al. 
(2004) 

 CH-Lae Etzold et al. 
(2011) 

 US-Wi9 Schmidt et 
al. (2011) 
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Model (1) 
Dependent variable NEE 
Average temperature -2.20*** 
 (0.46) 
Average temperature 
squared 

0.07** 
(0.03) 

Precipitation -0.00 
 (0.00) 
Latitude -0.06 
 (0.29) 
Elevation -0.00 
 (0.00) 
2000 (reference)  
2001 3.80 
 (2.60) 
2002 -1.21 
 (3.38) 
2003 -1.77 
 (3.98) 
2004 -2.15 
 (3.69) 
2005 -1.42 
 (3.65) 
2006 -0.10 
 (3.62) 
2007 -3.53 
 (3.84) 
2008 -1.75 
 (3.73) 
2009 -1.45 
 (4.02) 
2010 0.34 
 (3.83) 
2011 -1.63 
 (3.90) 
2012 -1.24 
 (3.90) 
2013 -0.93 
 (3.80) 
2014 -2.46 
 (3.92) 
Constant 5.60 
 (19.49) 
n x T 607 
n 78 
adjusted R2 0.15 

Table B.2 | Linear OLS regression of net ecosystem exchange. NEE = net ecosystem exchange in 
tCO2ha-1yr-1. ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard errors 
in brackets. All standard errors are clustered by tower site, and robust with respect to heteroscedasticity 
and autocorrelation. Years covered: 2000-2014. Table B.3 gives a descriptive overview of all variables 
in model 1. Table B.1 lists all 78 micrometeorological measurement towers of FLUXNET in forests 
included in model 1.  
  



32 
 

 
Figure B.1 | Predicted values of net ecosystem exchange (NEE) by annual average temperature. 
NEE of CO2 as predicted by the OLS regression model presented in Table B.2 (dark blue line) with 95% 
confidence intervals (blue area). Negative numbers on the y-axis indicate net absorption of CO2 by 
forests, positive numbers net CO2 release. 
 
 
Variable mean  within (𝑥̅𝑥𝑖𝑖) between 

(𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑥̅𝑥𝑖𝑖 + 𝑥̿𝑥) 
N 

(nxT) 
n Description 

sd min. max. sd  min. max. 
Net ecosystem 
exchange 

-13.98 6.28 -41.86 13.55 15.52 -67.40 10.21 674 94 Net ecosystem exchange (NEE) of CO2. NEE 
is the sum of Gross Primary Productivity 
(GPP, i.e. biomass stored) and ecosystem 
respiration (release of CO2 from soil and 
plant). Negative numbers indicate net 
absorption, positive numbers net release of 
CO2. Unit: t per ha. 

Average 
temperature 

8.87 0.73 6.52 11.21 7.42 -4.62 25.89 693 94 Average annual air temperature derived from 
daily averages. Unit: °C.  

Precipitation 0.92 0.19 0.19 1.59 0.56 0.16 3.11 693 94 Annual precipitation. Sum of daily data.  
Unit: 1000 mm. 

Latitude 44.39 0 44.39 44.39 12.93 2.9 67.4 693 94 In degrees north or south from equator. 
Elevation 527.62 0 527.62 527.62 596.38 1 3197 625 78 Elevation of site. Unit: m above sea level. 
Table B.3 | Variable description of FLUXNET data of micrometeorological measurement towers 
in forests. Data source is FLUXNET, a global network of micrometeorological tower sites with long-
term measurement. FLUXNET is operated by the Oak Ridge National Laboratory Distributed Active 
Archive Center (ORNL DAAC) of the National Aeronautics and Space Administration (NASA) of the 
United States. Years covered: 2000-2014. 
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Rank Country Sum score 
of quintiles 

CO2 
emissions 

CO2 p.c. 
emissions 

Forest 
land share 

NEE  
per ha 

NEE NEE 
potential 

GDP p.c. 

1 Japan 33 5 5 5 4 5 4 5 
2 Spain 33 5 4 4 5 5 5 5 
3 South Korea 32 5 5 5 5 4 3 5 
4 France 32 5 4 3 5 5 5 5 
5 United States 31 5 5 3 3 5 5 5 
6 Australia 31 5 5 2 4 5 5 5 
7 Mexico 30 5 4 3 4 5 5 4 
8 Argentina 30 5 4 2 5 5 5 4 
9 Italy 30 5 4 3 5 4 4 5 

10 Germany 30 5 5 3 4 4 4 5 
11 Turkey 30 5 4 2 5 5 5 4 
12 Brazil 29 5 3 5 2 5 5 4 
13 Peru 29 4 3 5 4 5 5 3 
14 New Zealand 29 3 5 4 4 4 4 5 
15 China 29 5 5 3 3 5 5 3 
16 Poland 29 5 5 3 4 4 4 4 
17 Iran, Islamic Rep. 29 5 5 1 5 4 5 4 
18 Venezuela, RB 29 5 4 5 2 5 4 4 
19 South Africa 28 5 5 1 5 4 5 3 
20 Turkmenistan 28 4 5 2 5 4 4 4 
21 Malaysia 28 5 5 5 2 4 3 4 
22 Belarus 28 4 4 4 4 4 4 4 
23 Czech Republic 28 4 5 4 4 3 3 5 
24 Greece 28 4 4 3 5 4 4 4 
25 Bulgaria 28 4 5 4 5 3 3 4 
26 United Kingdom 27 5 4 2 4 3 4 5 
27 Portugal 27 4 4 4 5 3 3 4 
28 Chile 27 4 4 3 3 5 4 4 
29 Serbia 27 5 5 3 5 3 3 3 
30 Bolivia 27 3 3 5 4 5 5 2 
31 Romania 27 4 4 3 4 4 4 4 
32 Indonesia 26 5 3 5 1 5 4 3 
33 Finland 26 4 5 5 1 4 2 5 
34 Austria 26 4 5 4 3 3 2 5 
35 Hungary 26 4 4 3 5 3 3 4 
36 Belgium 26 4 5 3 5 2 2 5 
37 Kazakhstan 26 5 5 1 3 3 5 4 
38 Ukraine 26 5 4 2 4 4 5 2 
39 Colombia 26 4 3 5 2 5 4 3 
40 Slovenia 25 3 5 5 4 2 1 5 
41 Thailand 25 5 4 3 1 4 4 4 
42 Croatia 25 3 4 4 5 3 2 4 
43 India 25 5 3 3 2 5 5 2 
44 Vietnam 25 5 3 5 2 4 4 2 
45 Sweden 25 4 4 5 1 4 2 5 
46 Morocco 25 4 3 2 5 4 4 3 
47 Slovak Republic 25 3 5 4 4 2 2 5 
48 Bosnia and Herzegovina 24 3 5 4 4 3 2 3 
49 Angola 24 3 2 4 3 5 5 2 
50 Netherlands 24 4 5 2 5 1 2 5 
51 Ecuador 24 3 3 5 3 4 3 3 
52 Ireland 24 3 5 2 4 2 3 5 
53 Estonia 24 3 5 5 3 2 1 5 
54 Latvia 23 2 4 5 3 3 2 4 
55 Zambia 23 2 1 5 3 5 5 2 
56 Zimbabwe 23 3 2 4 3 5 5 1 
57 Norway 23 4 5 3 1 3 2 5 
58 Botswana 23 2 3 2 3 4 5 4 
59 Uruguay 23 2 3 2 5 3 4 4 
60 Azerbaijan 23 3 4 2 5 2 3 4 
61 Myanmar 23 3 1 4 3 5 5 2 
62 Uzbekistan 22 4 3 1 5 3 4 2 
63 Paraguay 22 2 2 4 3 4 4 3 
64 Russian Federation 22 5 5 5 1 1 1 4 
65 Namibia 22 1 3 2 4 4 5 3 
66 Lithuania 22 3 4 4 3 2 2 4 
67 Syrian Arab Republic 22 4 3 1 5 1 3 5 
68 Denmark 22 3 4 2 4 2 2 5 
69 Lao PDR 22 1 2 5 3 5 4 2 
70 Canada 22 5 5 4 1 1 1 5 
71 Tanzania 22 2 1 5 3 5 5 1 
72 Iraq 21 4 4 1 4 2 3 3 

Table B.4 | Full country ranking of climate responsibility, forests’ mitigation contribution and 
potential, and economic capabilities in 2015. 
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Rank Country Sum score 
of quintiles 

CO2 
emissions 

CO2 p.c. 
emissions 

Forest 
land share 

NEE  
per ha 

NEE NEE 
potential 

GDP p.c. 

73 Congo, Rep. 21 2 2 5 2 5 3 2 
74 Israel 21 4 5 1 4 1 1 5 
75 Switzerland 21 3 4 3 3 2 1 5 
76 Gabon 21 2 3 5 2 4 1 4 
77 Algeria 21 4 4 1 3 2 4 3 
78 Congo, Dem. Rep. 20 2 1 5 2 5 4 1 
79 Cameroon 20 3 2 4 2 4 3 2 
80 Panama 20 2 3 5 2 3 1 4 
81 Georgia 20 2 3 4 3 3 2 3 
82 Lebanon 20 3 4 2 5 1 1 4 
83 Saudi Arabia 20 5 5 1 2 1 1 5 
84 Pakistan 20 4 2 1 4 2 5 2 
85 Central African Republic 20 1 1 4 2 4 3 5 
86 Macedonia, FYR 20 2 4 4 4 2 1 3 
87 Cuba 20 3 3 3 2 2 2 5 
88 Papua New Guinea 20 2 2 5 2 5 2 2 
89 Mozambique 20 2 1 5 2 5 4 1 
90 Albania 19 1 3 3 5 2 2 3 
91 Dominican Republic 19 3 3 4 3 2 1 3 
92 Tunisia 19 3 3 1 4 2 3 3 
93 Philippines 19 4 2 3 2 3 3 2 
94 Egypt, Arab Rep. 19 5 3 1 3 1 3 3 
95 Nepal 18 2 1 3 5 3 3 1 
96 Ethiopia 18 2 1 2 3 4 5 1 
97 Costa Rica 18 2 3 5 2 2 1 3 
98 Libya 18 4 5 1 3 1 2 2 
99 Honduras 17 2 2 4 2 3 2 2 

100 Bangladesh 17 4 2 2 2 2 3 2 
101 Nigeria 17 4 2 1 1 3 4 2 
102 Kenya 17 3 2 1 2 3 5 1 
103 Ghana 17 3 2 4 1 3 2 2 
104 Afghanistan 17 2 1 1 5 2 5 1 
105 Cambodia 17 2 2 5 1 3 2 2 
106 Somalia 17 1 1 2 1 3 4 5 
107 Guatemala 17 3 2 3 2 3 2 2 
108 Moldova 17 2 3 2 5 1 2 2 
109 Cote d'Ivoire 16 2 2 3 1 3 3 2 
110 Jordan 16 3 3 1 4 1 1 3 
111 Swaziland 16 1 2 4 4 1 1 3 
112 Madagascar 16 1 1 2 3 4 4 1 
113 Jamaica 15 2 3 3 2 1 1 3 
114 Malawi 15 1 1 3 3 3 3 1 
115 Sri Lanka 15 3 2 3 1 2 1 3 
116 Nicaragua 15 2 2 3 2 2 2 2 
117 Uganda 14 2 1 2 2 2 4 1 
118 Mongolia 14 3 4 1 1 1 1 3 
119 Burundi 14 1 1 2 3 1 1 5 
120 Liberia 14 1 1 4 2 3 2 1 
121 Senegal 14 2 2 4 1 2 2 1 
122 Armenia 14 1 3 2 3 1 1 3 
123 Yemen, Rep. 13 3 2 1 3 1 2 1 
124 Lesotho 13 1 1 1 5 1 2 2 
125 Guinea 13 1 1 3 1 3 3 1 
126 Benin 13 2 2 4 1 2 1 1 
127 El Salvador 13 2 2 2 2 1 1 3 
128 Kyrgyz Republic 12 2 2 1 1 1 3 2 
129 Rwanda 11 1 1 2 4 1 1 1 
130 Guinea-Bissau 11 1 1 5 1 1 1 1 
131 Chad 11 1 1 1 1 2 4 1 
132 Sierra Leone 11 1 1 4 1 2 1 1 
133 Tajikistan 11 1 2 1 2 1 3 1 
134 Gambia, The 11 1 1 5 1 1 1 1 
135 Burkina Faso 10 1 1 2 1 2 2 1 
136 Mauritania 10 1 2 1 1 1 2 2 
137 Niger 9 1 1 1 1 1 3 1 
138 Mali 9 1 1 1 1 1 3 1 
139 Haiti 8 1 1 1 2 1 1 1 
140 Eritrea 8 1 1 2 1 1 1 1 
141 Togo 7 1 1 1 1 1 1 1 

Table B.4, continued | Full country ranking of climate responsibility, forests’ mitigation 
contribution and potential, and economic capabilities in 2015. p.c. = per capita, NEE = net ecosystem 
exchange, GDP = gross domestic product. Numbers represent the quintiles the countries rank if not indicated otherwise. Data 
sources: CO2 emissions: EDGAR – Emissions Database for Global Atmospheric Research; forest land share: FAO – Food and 
Agriculture Organization of the UN; NEE: own calculations based on FLUXNET data; GDP: IMF – International Monetary Fund.    
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Model (1) (2) (3) (4) (5) (6) 
Dependent 
variable 

Forest land share 

Agricultural land -0.21* -0.08 -0.03 -0.04 0.05 0.03 
 (0.10) (0.10) (0.10) (0.11) (0.13) (0.12) 
       

Population  -0.27** -0.28** -0.27** -0.17* -0.18* 
 (0.08) (0.08) (0.08) (0.08) (0.08) 

Urban population  -0.00 -0.02 -0.01 -0.12 -0.11 
 (0.09) (0.09) (0.09) (0.09) (0.08) 

       

GDP per capita   0.10* 0.09* 0.10* 0.09* 
   (0.04) (0.03) (0.04) (0.04) 
Industry   -0.10* -0.08* -0.09* -0.10* 
   (0.04) (0.04) (0.04) (0.04) 
Services   -0.08 -0.08+ -0.09+ -0.09+ 
   (0.05) (0.04) (0.05) (0.05) 
       

Forest products 
trade balance 

   0.02 0.02 0.03 
   (0.03) (0.02) (0.02) 

       

Protected forest 
area 

    0.06* 0.06* 
    (0.03) (0.03) 

       

Mean temperature      -0.10* 
     (0.04) 

Droughts      0.00 
      (0.00) 
n x T 2494 2494 2255 2255 1781 1744 
n 98 98 96 96 88 88 
adjusted R2 within 0.06 0.15 0.22 0.20 0.27 0.28 
Table B.5 | Country and time fixed effects regressions of forest land share. + = p < 0.10, * = p < 
0.05, ** = p < 0.01. Unstandardized regression coefficients with standard errors in brackets. All six 
models include the years 1990-2015 and contain dummy variables for each year in order to control for 
overall time-trends. All standard errors are clustered by country and year, and robust with respect to 
heteroscedasticity and autocorrelation.  
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Figure B.2 | Partial residual plot for GDP p.c. of model 6 in Figure 4 and Table B.5. Partial residual 
for every country year (blue filled circles) and the smoothed mean (red curve) as calculated from the 
fixed effects regression with penalized splines (Ruppert et al. 2003) for logged GDP per capita. Red 
ticks on the x-axis represent knots. The plot demonstrates that the effect of GDP growth on forest land 
share growth is almost flat for poor countries with logged PPP GDP p.c. of less than ca. 8.0, and positive 
and virtually linear for richer countries. Thus, the effect is positive and linear for the vast majority of 
observations. 
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Variable mean  within (𝑥̅𝑥𝑖𝑖) between 
(𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑥̅𝑥𝑖𝑖 + 𝑥̿𝑥) 

N 
(nxT) 

n Description Data 
Source 

sd min. max. sd  min. max. 
Forest land 
share  

32.77 2.02 18.34 50.01 23.83 0 98.60 4690 181 Forest is determined both by the 
presence of trees and the absence 
of other predominant land uses. 
Forest area is land under natural or 
planted stands of trees of at least 5 
meters in situ or with the potential of 
growth to this height, with an area of 
more than 0.5ha and width of more 
than 20m, and a canopy cover of at 
least 10%, whether productive or 
not, and excludes tree stands in 
agricultural production systems and 
trees in urban parks and gardens. 
Unit: % of land area. 

FAO 

Agricultural 
land 

40.37 2.87 19.71 57.93 21.12 0.53 84.40 4650 182 Agricultural land refers to the share 
of land area that is arable, under 
permanent crops, and under 
permanent pastures.  
Unit: % of land area. 

FAO 

Population 34.12 12.17 -191.34 249.11 127.76 0.02 1272.37 4754 183 Total population. Unit: 1 million. UNPD, 
WB 

Urban 
population 

52.83 3.37 39.20 69.73 23.32 8.93 100 4806 185 Urban population refers to people 
living in urban areas as defined by 
national statistical offices.  
Unit: % of total population. 

UNPD, 
FAO, 
WB 

GDP p. c. 11.29 4.85 -16.87 47.98 11.75 0.54 62.31 4384 177 Gross domestic product (GDP) per 
capita (p.c.) based on purchasing 
power parity (PPP). PPP GDP is 
GDP converted to international 
dollars using PPP rates.  
Unit: 1000 international dollars. 

IMF 

Industry,  
value added 

28.17 4.50 -5.59 60.52 11.04 7.20 75.96 4092 174 Industry corresponds to the 
International Standard Industrial 
Classification (ISIC) divisions 10-45. 
The origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Services, 
value added 

55.57 5.41 22.75 99.17 13.46 22.77 82.07 4075 173 Services correspond to ISIC 
divisions 50-99. The industrial origin 
of value added is determined by the 
ISIC, revision 3.  
Unit: % of GDP. 

WB 

Forest 
products 
trade 
balance 

0.16 1.53 -24.07 27.69 2.03 -2.09 24.27 4171 174 Forest products trade balance is the 
ratio of exports to imports of forest 
goods as share of GDP. 

FAO 

Protected 
forest area 

37.40 34.56 -640.36 469.28 142.59 0 1630.39 3289 149 Protected forest area is designated 
primarily for conservation of 
biological diversity and natural and 
associated cultural resources. 
Protection and maintenance is 
managed through legal or other 
effective means. Unit: km2. 

FAO 

Mean 
temperature 

18.98 0.49 15.61 21.29 8.21 -5.97 28.90 4225 169 Mean annual air temperature 
derived from quality controlled 
monthly observational data from 
thousands of weather stations 
worldwide. Unit: °C. 

WB 

Droughts 0.20 0.36 -0.60 1.16 0.24 0 1 1963 160 Dummy, 1, if a drought occurred at 
least once a year. A drought is 
classified if at least one of the 
following criteria is met: 10 or more 
people dead, 100 or more people 
affected, declaration of a state of 
emergency, call for international 
assistance. 

CRED 

Table B.6 | Drivers of national forest land share: variable description. CRED = Centre for Research 
on the Epidemiology of Disasters, FAO = Food and Agriculture Organization of the United Nations, IMF 
= International Monetary Fund, UNPD = United Nations Population Division, WB = World Bank; All 
variables in the models are included by taking the natural logarithm allowing for the estimation of 
elasticities. Years covered: 1990-2015. 
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Algeria*# Hungary*# Peru*# 
Argentina*# India*# Philippines*# 
Australia*# Indonesia*# Poland*# 
Austria*# Iran, Islamic Rep.*# Portugal*# 
Bangladesh*# Ireland*# Romania*# 
Belarus*# Israel Russian Federation*# 
Belgium*# Italy*# Senegal*# 
Brazil*# Jamaica*# Serbia*# 
Bulgaria*# Japan* Slovak Republic*# 
Burkina Faso*# Kenya*# Slovenia*# 
Cambodia*# Lao PDR* South Africa*# 
Cameroon*# Latvia*# South Korea*# 
Canada*# Lebanon*# Spain*# 
Chile*# Liberia Sri Lanka* 
China*# Lithuania*# Swaziland*# 
Colombia*# Malawi*# Sweden*# 
Congo, Rep.*# Malaysia*# Switzerland*# 
Costa Rica* Mali*# Tajikistan*# 
Croatia*# Mexico*# Tanzania*# 
Czech Republic*# Mongolia*# Thailand*# 
Denmark*# Morocco*# Tunisia*# 
Dominican Republic* Mozambique*# Turkey*# 
Ecuador*# Myanmar*# Uganda*# 
Estonia*# Namibia*# Ukraine*# 
Ethiopia* Nepal*# United Kingdom* 
Finland*# Netherlands*# United States*# 
France* New Zealand*# Uruguay*# 
Gabon*# Nicaragua*# Uzbekistan*# 
Gambia, The*# Niger*# Venezuela, RB*# 
Georgia*# Norway*# Vietnam*# 
Germany*# Panama*# Zambia*# 
Ghana*# Papua New Guinea*# Zimbabwe*# 
Guatemala*# Paraguay*#  
Table B.7 | Countries included in the analyses. All 98 countries are full members of the United 
Nations, have sufficient quality of forest area data (tier 2 and 3; FAO 2016) and are included in the 
models 1, and 2 of Table B.5. Due to missing values in the further added variables, the models 3 and 4 
include the 96 countries indicated by ‘*’, and for the models 5 and 6 of Table B.5 the 88 countries marked 
by ‘#’. 
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